|
|
|
@ -50,7 +50,7 @@ __all__ = [
|
|
|
|
|
'weibull_max', 'genlogistic', 'genpareto', 'genexpon', 'genextreme',
|
|
|
|
|
'gamma', 'gengamma', 'genhalflogistic', 'gompertz', 'gumbel_r',
|
|
|
|
|
'gumbel_l', 'halfcauchy', 'halflogistic', 'halfnorm', 'hypsecant',
|
|
|
|
|
'gausshyper', 'invgamma', 'invnorm', 'invgauss', 'invweibull',
|
|
|
|
|
'gausshyper', 'invgamma', 'invgauss', 'invweibull',
|
|
|
|
|
'johnsonsb', 'johnsonsu', 'laplace', 'levy', 'levy_l',
|
|
|
|
|
'levy_stable', 'logistic', 'loggamma', 'loglaplace', 'lognorm',
|
|
|
|
|
'gilbrat', 'maxwell', 'mielke', 'nakagami', 'ncx2', 'ncf', 't',
|
|
|
|
@ -3901,7 +3901,7 @@ class genpareto_gen(rv_continuous):
|
|
|
|
|
#%f = (1+k.*xn)**(-1./k-1)/s; % for k~=0
|
|
|
|
|
#%f = exp((-1./k-1)*log1p(kxn))/s % for k~=0
|
|
|
|
|
#%f = exp((-xn-kxn)*log1p(kxn)/(kxn))/s % for any k kxn~=inf
|
|
|
|
|
return exp(self._logpdf(x, c)
|
|
|
|
|
return exp(self._logpdf(x, c))
|
|
|
|
|
#Px = pow(1+c*x,arr(-1.0-1.0/c))
|
|
|
|
|
#return Px
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
@ -5367,10 +5367,12 @@ class t_gen(rv_continuous):
|
|
|
|
|
g1 = where(df > 3, 0.0, nan)
|
|
|
|
|
g2 = where(df > 4, 6.0/(df-4.0), nan)
|
|
|
|
|
return 0, mu2, g1, g2
|
|
|
|
|
t = t_gen(name='t', shapes="df")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Non-central T distribution
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class nct_gen(rv_continuous):
|
|
|
|
|
"""A non-central Student's T continuous random variable.
|
|
|
|
|
|
|
|
|
|