Made tests more robust.
parent
139cc27730
commit
28b2a33e6a
@ -1,40 +1,45 @@
|
||||
from wafo.transform.models import TrHermite, TrOchi, TrLinear
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_almost_equal
|
||||
|
||||
def test_trhermite():
|
||||
|
||||
std = 7./4
|
||||
std = 7. / 4
|
||||
g = TrHermite(sigma=std, ysigma=std)
|
||||
assert(np.abs(g.dist2gauss()- 0.88230868748851554)<1e-7)
|
||||
assert(np.abs(g.dist2gauss() - 0.88230868748851554) < 1e-7)
|
||||
|
||||
assert( g.mean == 0.0)
|
||||
assert(g.mean == 0.0)
|
||||
assert(g.sigma == 1.75)
|
||||
vals = g.dat2gauss([0,1,2,3])
|
||||
true_vals = np.array([ 0.04654321, 1.03176393, 1.98871279, 2.91930895])
|
||||
assert((np.abs(vals-true_vals)<1e-7).all())
|
||||
vals = g.dat2gauss([0, 1, 2, 3])
|
||||
true_vals = np.array([0.04654321, 1.03176393, 1.98871279, 2.91930895])
|
||||
assert((np.abs(vals - true_vals) < 1e-7).all())
|
||||
|
||||
|
||||
def test_trochi():
|
||||
|
||||
std = 7./4
|
||||
std = 7. / 4
|
||||
g = TrOchi(sigma=std, ysigma=std)
|
||||
assert(g.dist2gauss()== 1.4106988010566603)
|
||||
assert(g.mean== 0.0)
|
||||
assert(g.sigma==1.75)
|
||||
vals = g.dat2gauss([0,1,2,3])
|
||||
true_vals = np.array([ 6.21927960e-04, 9.90237621e-01, 1.96075606e+00,
|
||||
2.91254576e+00])
|
||||
assert((np.abs(vals-true_vals)<1e-7).all())
|
||||
assert_array_almost_equal(g.dist2gauss(), 1.4106988010566603)
|
||||
assert_array_almost_equal(g.mean, 0.0)
|
||||
assert_array_almost_equal(g.sigma, 1.75)
|
||||
vals = g.dat2gauss([0, 1, 2, 3])
|
||||
true_vals = np.array([6.21927960e-04, 9.90237621e-01, 1.96075606e+00,
|
||||
2.91254576e+00])
|
||||
assert_array_almost_equal(vals, true_vals)
|
||||
# assert((np.abs(vals - true_vals) < 1e-7).all())
|
||||
|
||||
|
||||
def test_trlinear():
|
||||
|
||||
std = 7./4
|
||||
std = 7. / 4
|
||||
g = TrLinear(sigma=std, ysigma=std)
|
||||
assert(g.dist2gauss() == 0.0)
|
||||
assert(g.mean == 0.0)
|
||||
assert(g.sigma== 1.75)
|
||||
vals = g.dat2gauss([0,1,2,3])
|
||||
true_vals = np.array([ 0., 1., 2., 3.])
|
||||
assert((np.abs(vals-true_vals)<1e-7).all())
|
||||
assert(g.mean == 0.0)
|
||||
assert(g.sigma == 1.75)
|
||||
vals = g.dat2gauss([0, 1, 2, 3])
|
||||
true_vals = np.array([0., 1., 2., 3.])
|
||||
assert((np.abs(vals - true_vals) < 1e-7).all())
|
||||
|
||||
if __name__=='__main__':
|
||||
if __name__ == '__main__':
|
||||
import nose
|
||||
nose.run()
|
Loading…
Reference in New Issue