master
Per A Brodtkorb 7 years ago
parent a099f7ada7
commit 258ea054a3

@ -48,7 +48,7 @@ _wafocov_estimation = JITImport('wafo.covariance.estimation')
_wafospec = JITImport('wafo.spectrum') _wafospec = JITImport('wafo.spectrum')
__all__ = ['TimeSeries', 'LevelCrossings', 'CyclePairs', 'TurningPoints', __all__ = ['TimeSeries', 'LevelCrossings', 'CyclePairs', 'TurningPoints',
'sensortypeid', 'sensortype'] 'CycleMatrix']
def _invchi2(q, df): def _invchi2(q, df):
@ -905,7 +905,8 @@ class CyclePairs(PlotData):
# for j in range(i + 1, n): # = i+1:n # for j in range(i + 1, n): # = i+1:n
# if F[i, j] != 0: # if F[i, j] != 0:
# hi = h * _lamda[i, j] # hi = h * _lamda[i, j]
# F1 = np.exp(-1 / (2 * hi**2) * ((I - i)**2 + (J - j)**2)) # Gaussian kernel # # Gaussian kernel
# F1 = np.exp(-1 / (2 * hi**2) * ((I - i)**2 + (J - j)**2))
# F1 = F1 + F1.T # Mirror kernel in diagonal # F1 = F1 + F1.T # Mirror kernel in diagonal
# F1 = np.triu(F1, 1 + NOsubzero) # Set to zero below and on diagonal # F1 = np.triu(F1, 1 + NOsubzero) # Set to zero below and on diagonal
# F1 = F[i, j] * F1 / np.sum(F1) # Normalize # F1 = F[i, j] * F1 / np.sum(F1) # Normalize

@ -1153,7 +1153,7 @@ class SpecData1D(PlotData):
pl = [10, 30, 50, 70, 90, 95, 99, 99.9] pl = [10, 30, 50, 70, 90, 95, 99, 99.9]
mmpdf.cl = qlevels(uvdens, pl, xi=(h, h)) mmpdf.cl = qlevels(uvdens, pl, xi=(h, h))
mmpdf.pl = pl mmpdf.pl = pl
except: except Exception:
pass pass
return mmpdf return mmpdf
@ -1696,7 +1696,7 @@ class SpecData1D(PlotData):
try: try:
f.cl, f.pl = qlevels(f.f, [10, 30, 50, 70, 90, 95, 99, 99.9], f.cl, f.pl = qlevels(f.f, [10, 30, 50, 70, 90, 95, 99, 99.9],
f.args[0], f.args[1]) f.args[0], f.args[1])
except: except Exception:
warnings.warn('Singularity likely in pdf') warnings.warn('Singularity likely in pdf')
# Test of spec2mmtpdf # Test of spec2mmtpdf
@ -4257,6 +4257,7 @@ def test_mm_pdf():
mm.plot() mm.plot()
plotbackend.show() plotbackend.show()
def test_docstrings(): def test_docstrings():
import doctest import doctest
doctest.testmod() doctest.testmod()

Loading…
Cancel
Save