Reordered methods

master
Per.Andreas.Brodtkorb 12 years ago
parent 869e088793
commit 217a67893a

@ -693,11 +693,97 @@ def slopes(x,y, method='parabola', tension=0, monotone=False):
return yp
class StinemanInterp2(PiecewisePolynomial):
def __init__(self, x, y, yp=None, method='parabola', monotone=False):
def stineman_interp(xi, x, y, yp=None):
"""
Given data vectors *x* and *y*, the slope vector *yp* and a new
abscissa vector *xi*, the function :func:`stineman_interp` uses
Stineman interpolation to calculate a vector *yi* corresponding to
*xi*.
Here's an example that generates a coarse sine curve, then
interpolates over a finer abscissa::
x = linspace(0,2*pi,20); y = sin(x); yp = cos(x)
xi = linspace(0,2*pi,40);
yi = stineman_interp(xi,x,y,yp);
plot(x,y,'o',xi,yi)
The interpolation method is described in the article A
CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell
W. Stineman. The article appeared in the July 1980 issue of
Creative Computing with a note from the editor stating that while
they were:
not an academic journal but once in a while something serious
and original comes in adding that this was
"apparently a real solution" to a well known problem.
For *yp* = *None*, the routine automatically determines the slopes
using the :func:`slopes` routine.
*x* is assumed to be sorted in increasing order.
For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine
tries an extrapolation. The relevance of the data obtained from
this, of course, is questionable...
Original implementation by Halldor Bjornsson, Icelandic
Meteorolocial Office, March 2006 halldor at vedur.is
Completely reworked and optimized for Python by Norbert Nemec,
Institute of Theoretical Physics, University or Regensburg, April
2006 Norbert.Nemec at physik.uni-regensburg.de
"""
# Cast key variables as float.
x = np.asarray(x, np.float_)
y = np.asarray(y, np.float_)
assert x.shape == y.shape
#N = len(y)
if yp is None:
yp = slopes(x, y, method, monotone=monotone)
super(StinemanInterp,self).__init__(x, zip(y,yp))
yp = slopes(x, y)
else:
yp = np.asarray(yp, np.float_)
xi = np.asarray(xi, np.float_)
#yi = np.zeros(xi.shape, np.float_)
# calculate linear slopes
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
s = dy / dx #note length of s is N-1 so last element is #N-2
# find the segment each xi is in
# this line actually is the key to the efficiency of this implementation
idx = np.searchsorted(x[1:-1], xi)
# now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1]
# except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1]
# the y-values that would come out from a linear interpolation:
sidx = s.take(idx)
xidx = x.take(idx)
yidx = y.take(idx)
xidxp1 = x.take(idx + 1)
yo = yidx + sidx * (xi - xidx)
# the difference that comes when using the slopes given in yp
dy1 = (yp.take(idx) - sidx) * (xi - xidx) # using the yp slope of the left point
dy2 = (yp.take(idx + 1) - sidx) * (xi - xidxp1) # using the yp slope of the right point
dy1dy2 = dy1 * dy2
# The following is optimized for Python. The solution actually
# does more calculations than necessary but exploiting the power
# of numpy, this is far more efficient than coding a loop by hand
# in Python
dy1mdy2 = np.where(dy1dy2,dy1-dy2,np.inf)
dy1pdy2 = np.where(dy1dy2,dy1+dy2,np.inf)
yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32) + 1,
((2 * xi - xidx - xidxp1) / ((dy1mdy2) * (xidxp1 - xidx)),
0.0,
1 / (dy1pdy2)))
return yi
class StinemanInterp(object):
'''
@ -812,98 +898,11 @@ class StinemanInterp(object):
1 / (dy1pdy2)))
return yi
def stineman_interp(xi, x, y, yp=None):
"""
Given data vectors *x* and *y*, the slope vector *yp* and a new
abscissa vector *xi*, the function :func:`stineman_interp` uses
Stineman interpolation to calculate a vector *yi* corresponding to
*xi*.
Here's an example that generates a coarse sine curve, then
interpolates over a finer abscissa::
x = linspace(0,2*pi,20); y = sin(x); yp = cos(x)
xi = linspace(0,2*pi,40);
yi = stineman_interp(xi,x,y,yp);
plot(x,y,'o',xi,yi)
The interpolation method is described in the article A
CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell
W. Stineman. The article appeared in the July 1980 issue of
Creative Computing with a note from the editor stating that while
they were:
not an academic journal but once in a while something serious
and original comes in adding that this was
"apparently a real solution" to a well known problem.
For *yp* = *None*, the routine automatically determines the slopes
using the :func:`slopes` routine.
*x* is assumed to be sorted in increasing order.
For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine
tries an extrapolation. The relevance of the data obtained from
this, of course, is questionable...
Original implementation by Halldor Bjornsson, Icelandic
Meteorolocial Office, March 2006 halldor at vedur.is
Completely reworked and optimized for Python by Norbert Nemec,
Institute of Theoretical Physics, University or Regensburg, April
2006 Norbert.Nemec at physik.uni-regensburg.de
"""
# Cast key variables as float.
x = np.asarray(x, np.float_)
y = np.asarray(y, np.float_)
assert x.shape == y.shape
#N = len(y)
class StinemanInterp2(PiecewisePolynomial):
def __init__(self, x, y, yp=None, method='parabola', monotone=False):
if yp is None:
yp = slopes(x, y)
else:
yp = np.asarray(yp, np.float_)
xi = np.asarray(xi, np.float_)
#yi = np.zeros(xi.shape, np.float_)
# calculate linear slopes
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
s = dy / dx #note length of s is N-1 so last element is #N-2
# find the segment each xi is in
# this line actually is the key to the efficiency of this implementation
idx = np.searchsorted(x[1:-1], xi)
# now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1]
# except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1]
# the y-values that would come out from a linear interpolation:
sidx = s.take(idx)
xidx = x.take(idx)
yidx = y.take(idx)
xidxp1 = x.take(idx + 1)
yo = yidx + sidx * (xi - xidx)
# the difference that comes when using the slopes given in yp
dy1 = (yp.take(idx) - sidx) * (xi - xidx) # using the yp slope of the left point
dy2 = (yp.take(idx + 1) - sidx) * (xi - xidxp1) # using the yp slope of the right point
dy1dy2 = dy1 * dy2
# The following is optimized for Python. The solution actually
# does more calculations than necessary but exploiting the power
# of numpy, this is far more efficient than coding a loop by hand
# in Python
dy1mdy2 = np.where(dy1dy2,dy1-dy2,np.inf)
dy1pdy2 = np.where(dy1dy2,dy1+dy2,np.inf)
yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32) + 1,
((2 * xi - xidx - xidxp1) / ((dy1mdy2) * (xidxp1 - xidx)),
0.0,
1 / (dy1pdy2)))
return yi
yp = slopes(x, y, method, monotone=monotone)
super(StinemanInterp2,self).__init__(x, zip(y,yp))
class CubicHermiteSpline(PiecewisePolynomial):
'''
@ -1008,10 +1007,10 @@ def compare_methods():
############################################################
# Sine wave test
############################################################
fun = np.sin
# Create a example vector containing a sine wave.
x = np.arange(30.0)/10.
y = np.sin(x)
y = fun(x)
# Interpolate the data above to the grid defined by "xvec"
xvec = np.arange(250.)/100.
@ -1032,12 +1031,12 @@ def compare_methods():
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x,y, 'r.')
plt.plot(x,y, 'ro', xvec, fun(xvec),'r')
plt.title("pchip() Sin test code")
# Plot the interpolated points
plt.plot(xvec, yvec, xvec, yvec1, xvec, yvec2,'go',xvec, yvec3)
plt.legend(['true','parbola_monoton','parabola','catmul','pchip'], frameon=False, loc=0)
plt.plot(xvec, yvec, xvec, yvec1, xvec, yvec2,'g.',xvec, yvec3)
plt.legend(['true','true','parbola_monoton','parabola','catmul','pchip'], frameon=False, loc=0)
plt.ioff()
plt.show()
@ -1150,8 +1149,8 @@ def test_docstrings():
if __name__ == '__main__':
test_docstrings()
# test_docstrings()
#main()
#test_smoothing_spline()
#compare_methods()
# demo_monoticity()
demo_monoticity()
Loading…
Cancel
Save