|
|
|
@ -1,112 +1,150 @@
|
|
|
|
|
import numpy as np
|
|
|
|
|
from scipy.fftpack import dct as _dct
|
|
|
|
|
from scipy.fftpack import idct as _idct
|
|
|
|
|
__all__ = ['dct', 'idct', 'dctn', 'idctn']
|
|
|
|
|
def dct(x, n=None):
|
|
|
|
|
"""
|
|
|
|
|
Discrete Cosine Transform
|
|
|
|
|
|
|
|
|
|
N-1
|
|
|
|
|
y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
|
|
|
|
|
n=0
|
|
|
|
|
def dct(x, type=2, n=None, axis=-1, norm='ortho'):
|
|
|
|
|
'''
|
|
|
|
|
Return the Discrete Cosine Transform of arbitrary type sequence x.
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
--------
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
>>> x = np.arange(5)
|
|
|
|
|
>>> np.abs(x-idct(dct(x)))<1e-14
|
|
|
|
|
array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
>>> np.abs(x-dct(idct(x)))<1e-14
|
|
|
|
|
array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
x : array_like
|
|
|
|
|
The input array.
|
|
|
|
|
type : {1, 2, 3}, optional
|
|
|
|
|
Type of the DCT (see Notes). Default type is 2.
|
|
|
|
|
n : int, optional
|
|
|
|
|
Length of the transform.
|
|
|
|
|
axis : int, optional
|
|
|
|
|
Axis over which to compute the transform.
|
|
|
|
|
norm : {None, 'ortho'}, optional
|
|
|
|
|
Normalization mode (see Notes). Default is 'ortho'.
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
y : ndarray of real
|
|
|
|
|
The transformed input array.
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
|
---------
|
|
|
|
|
http://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
|
|
|
http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/
|
|
|
|
|
"""
|
|
|
|
|
fft = np.fft.fft
|
|
|
|
|
x = np.atleast_1d(x)
|
|
|
|
|
See Also
|
|
|
|
|
--------
|
|
|
|
|
idct
|
|
|
|
|
|
|
|
|
|
if n is None:
|
|
|
|
|
n = x.shape[-1]
|
|
|
|
|
Notes
|
|
|
|
|
-----
|
|
|
|
|
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
|
|
|
|
|
MATLAB ``dct(x)``.
|
|
|
|
|
|
|
|
|
|
if x.shape[-1] < n:
|
|
|
|
|
n_shape = x.shape[:-1] + (n - x.shape[-1],)
|
|
|
|
|
xx = np.hstack((x, np.zeros(n_shape)))
|
|
|
|
|
else:
|
|
|
|
|
xx = x[..., :n]
|
|
|
|
|
There are theoretically 8 types of the DCT, only the first 3 types are
|
|
|
|
|
implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
|
|
|
|
|
Inverse DCT generally refers to DCT type 3.
|
|
|
|
|
|
|
|
|
|
real_x = np.all(np.isreal(xx))
|
|
|
|
|
if (real_x and (np.remainder(n, 2) == 0)):
|
|
|
|
|
xp = 2 * fft(np.hstack((xx[..., ::2], xx[..., ::-2])))
|
|
|
|
|
else:
|
|
|
|
|
xp = fft(np.hstack((xx, xx[..., ::-1])))
|
|
|
|
|
xp = xp[..., :n]
|
|
|
|
|
type I
|
|
|
|
|
~~~~~~
|
|
|
|
|
There are several definitions of the DCT-I; we use the following
|
|
|
|
|
(for ``norm=None``)::
|
|
|
|
|
|
|
|
|
|
w = np.exp(-1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
N-2
|
|
|
|
|
y[k] = x[0] + (-1)**k x[N-1] + 2 * sum x[n]*cos(pi*k*n/(N-1))
|
|
|
|
|
n=1
|
|
|
|
|
|
|
|
|
|
y = xp * w
|
|
|
|
|
Only None is supported as normalization mode for DCT-I. Note also that the
|
|
|
|
|
DCT-I is only supported for input size > 1
|
|
|
|
|
|
|
|
|
|
if real_x:
|
|
|
|
|
return y.real
|
|
|
|
|
else:
|
|
|
|
|
return y
|
|
|
|
|
type II
|
|
|
|
|
~~~~~~~
|
|
|
|
|
There are several definitions of the DCT-II; we use the following
|
|
|
|
|
(for ``norm=None``)::
|
|
|
|
|
|
|
|
|
|
def idct(x, n=None):
|
|
|
|
|
"""
|
|
|
|
|
Inverse Discrete Cosine Transform
|
|
|
|
|
|
|
|
|
|
N-1
|
|
|
|
|
x[k] = 1/N sum w[n]*y[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
|
|
|
|
|
y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
|
|
|
|
|
n=0
|
|
|
|
|
|
|
|
|
|
w(0) = 1/2
|
|
|
|
|
w(n) = 1 for n>0
|
|
|
|
|
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor `f`::
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
--------
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
>>> x = np.arange(5)
|
|
|
|
|
>>> np.abs(x-idct(dct(x)))<1e-14
|
|
|
|
|
array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
>>> np.abs(x-dct(idct(x)))<1e-14
|
|
|
|
|
array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
f = sqrt(1/(4*N)) if k = 0,
|
|
|
|
|
f = sqrt(1/(2*N)) otherwise.
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
|
---------
|
|
|
|
|
http://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
|
|
|
http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/
|
|
|
|
|
"""
|
|
|
|
|
Which makes the corresponding matrix of coefficients orthonormal
|
|
|
|
|
(``OO' = Id``).
|
|
|
|
|
|
|
|
|
|
ifft = np.fft.ifft
|
|
|
|
|
x = np.atleast_1d(x)
|
|
|
|
|
type III
|
|
|
|
|
~~~~~~~~
|
|
|
|
|
|
|
|
|
|
if n is None:
|
|
|
|
|
n = x.shape[-1]
|
|
|
|
|
There are several definitions, we use the following
|
|
|
|
|
(for ``norm=None``)::
|
|
|
|
|
|
|
|
|
|
w = np.exp(1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
N-1
|
|
|
|
|
y[k] = x[0] + 2 * sum x[n]*cos(pi*(k+0.5)*n/N), 0 <= k < N.
|
|
|
|
|
n=1
|
|
|
|
|
|
|
|
|
|
if x.shape[-1] < n:
|
|
|
|
|
n_shape = x.shape[:-1] + (n - x.shape[-1],)
|
|
|
|
|
xx = np.hstack((x, np.zeros(n_shape))) * w
|
|
|
|
|
else:
|
|
|
|
|
xx = x[..., :n] * w
|
|
|
|
|
|
|
|
|
|
real_x = np.all(np.isreal(x))
|
|
|
|
|
if (real_x and (np.remainder(n, 2) == 0)):
|
|
|
|
|
xx[..., 0] = xx[..., 0] * 0.5
|
|
|
|
|
yp = ifft(xx)
|
|
|
|
|
y = np.zeros(xx.shape, dtype=complex)
|
|
|
|
|
y[..., ::2] = yp[..., :n / 2]
|
|
|
|
|
y[..., ::-2] = yp[..., n / 2::]
|
|
|
|
|
else:
|
|
|
|
|
yp = ifft(np.hstack((xx, np.zeros_like(xx[..., 0]), np.conj(xx[..., :0:-1]))))
|
|
|
|
|
y = yp[..., :n]
|
|
|
|
|
or, for ``norm='ortho'`` and 0 <= k < N::
|
|
|
|
|
|
|
|
|
|
N-1
|
|
|
|
|
y[k] = x[0] / sqrt(N) + sqrt(1/N) * sum x[n]*cos(pi*(k+0.5)*n/N)
|
|
|
|
|
n=1
|
|
|
|
|
|
|
|
|
|
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
|
|
|
|
|
to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
|
|
|
|
|
the orthonormalized DCT-II.
|
|
|
|
|
|
|
|
|
|
if real_x:
|
|
|
|
|
return y.real
|
|
|
|
|
References
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
|
|
http://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
|
|
|
|
|
|
|
|
'A Fast Cosine Transform in One and Two Dimensions', by J. Makhoul, `IEEE
|
|
|
|
|
Transactions on acoustics, speech and signal processing` vol. 28(1),
|
|
|
|
|
pp. 27-34, http://dx.doi.org/10.1109/TASSP.1980.1163351 (1980).
|
|
|
|
|
'''
|
|
|
|
|
farr = np.asfarray
|
|
|
|
|
if np.iscomplex(x).any():
|
|
|
|
|
return _dct(farr(x.real), type, n, axis, norm) + 1j*_dct(farr(x.imag), type, n, axis, norm)
|
|
|
|
|
else:
|
|
|
|
|
return y
|
|
|
|
|
return _dct(farr(x), type, n, axis, norm)
|
|
|
|
|
def idct(x, type=2, n=None, axis=-1, norm='ortho'):
|
|
|
|
|
'''
|
|
|
|
|
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
x : array_like
|
|
|
|
|
The input array.
|
|
|
|
|
type : {1, 2, 3}, optional
|
|
|
|
|
Type of the DCT (see Notes). Default type is 2.
|
|
|
|
|
n : int, optional
|
|
|
|
|
Length of the transform.
|
|
|
|
|
axis : int, optional
|
|
|
|
|
Axis over which to compute the transform.
|
|
|
|
|
norm : {None, 'ortho'}, optional
|
|
|
|
|
Normalization mode (see Notes). Default is 'ortho'.
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
y : ndarray of real
|
|
|
|
|
The transformed input array.
|
|
|
|
|
|
|
|
|
|
def dctn(y, axis=None, w=None):
|
|
|
|
|
See Also
|
|
|
|
|
--------
|
|
|
|
|
dct
|
|
|
|
|
|
|
|
|
|
Notes
|
|
|
|
|
-----
|
|
|
|
|
For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
|
|
|
|
|
matlab ``idct(x)``.
|
|
|
|
|
|
|
|
|
|
'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.
|
|
|
|
|
|
|
|
|
|
IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type 3,
|
|
|
|
|
and IDCT of type 3 is the DCT of type 2. For the definition of these types,
|
|
|
|
|
see `dct`.
|
|
|
|
|
'''
|
|
|
|
|
farr = np.asarray
|
|
|
|
|
if np.iscomplex(x).any():
|
|
|
|
|
return _idct(farr(x.real), type, n, axis, norm) + 1j*_idct(farr(x.imag), type, n, axis, norm)
|
|
|
|
|
else:
|
|
|
|
|
return _idct(farr(x), type, n, axis, norm)
|
|
|
|
|
def dctn(x, type=2, axis=None, norm='ortho'):
|
|
|
|
|
'''
|
|
|
|
|
DCTN N-D discrete cosine transform.
|
|
|
|
|
|
|
|
|
@ -146,171 +184,380 @@ def dctn(y, axis=None, w=None):
|
|
|
|
|
idctn, dct, idct
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
y = np.atleast_1d(y)
|
|
|
|
|
y = np.atleast_1d(x)
|
|
|
|
|
shape0 = y.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if axis is None:
|
|
|
|
|
y = y.squeeze() # Working across singleton dimensions is useless
|
|
|
|
|
dimy = y.ndim
|
|
|
|
|
if dimy==1:
|
|
|
|
|
ndim = y.ndim
|
|
|
|
|
isvector = max(shape0)==y.size
|
|
|
|
|
if isvector:
|
|
|
|
|
if ndim==1:
|
|
|
|
|
y = np.atleast_2d(y)
|
|
|
|
|
y = y.T
|
|
|
|
|
# Some modifications are required if Y is a vector
|
|
|
|
|
# if isvector(y):
|
|
|
|
|
# if y.shape[0]==1:
|
|
|
|
|
# if axis==0:
|
|
|
|
|
# return y, None
|
|
|
|
|
# elif axis==1:
|
|
|
|
|
# axis=0
|
|
|
|
|
# y = y.T
|
|
|
|
|
# elif axis==1:
|
|
|
|
|
# return y, None
|
|
|
|
|
|
|
|
|
|
if w is None:
|
|
|
|
|
w = [0,] * dimy
|
|
|
|
|
for dim in range(dimy):
|
|
|
|
|
if axis is not None and dim!=axis:
|
|
|
|
|
continue
|
|
|
|
|
n = (dimy==1)*y.size + (dimy>1)*shape0[dim]
|
|
|
|
|
#w{dim} = exp(1i*(0:n-1)'*pi/2/n);
|
|
|
|
|
w[dim] = np.exp(1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
elif y.shape[0]==1:
|
|
|
|
|
if axis==0:
|
|
|
|
|
return x
|
|
|
|
|
elif axis==1:
|
|
|
|
|
axis=0
|
|
|
|
|
y = y.T
|
|
|
|
|
elif axis==1:
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
# --- DCT algorithm ---
|
|
|
|
|
if np.iscomplex(y).any():
|
|
|
|
|
y = np.complex(dctn(np.real(y),axis,w),dctn(np.imag(y),axis,w))
|
|
|
|
|
y = dctn(y.real, type, axis, norm) + 1j*dctn(y.imag, type, axis, norm)
|
|
|
|
|
else:
|
|
|
|
|
for dim in range(dimy):
|
|
|
|
|
y = shiftdim(y,1)
|
|
|
|
|
y = np.asfarray(y)
|
|
|
|
|
for dim in range(ndim):
|
|
|
|
|
y = y.transpose(np.roll(range(y.ndim), -1))
|
|
|
|
|
#y = shiftdim(y,1)
|
|
|
|
|
if axis is not None and dim!=axis:
|
|
|
|
|
y = shiftdim(y, 1)
|
|
|
|
|
continue
|
|
|
|
|
siz = y.shape
|
|
|
|
|
n = siz[-1]
|
|
|
|
|
y = y[...,np.r_[0:n:2, 2*int(n//2)-1:0:-2]]
|
|
|
|
|
y = y.reshape((-1,n))
|
|
|
|
|
y = y*np.sqrt(2*n);
|
|
|
|
|
y = (np.fft.ifft(y, n=n, axis=1) * w[dim]).real
|
|
|
|
|
y[:,0] = y[:,0]/np.sqrt(2)
|
|
|
|
|
y = y.reshape(siz)
|
|
|
|
|
|
|
|
|
|
#end
|
|
|
|
|
#end
|
|
|
|
|
|
|
|
|
|
return y.reshape(shape0), w
|
|
|
|
|
|
|
|
|
|
def idctn(y, axis=None, w=None):
|
|
|
|
|
'''
|
|
|
|
|
IDCTN N-D inverse discrete cosine transform.
|
|
|
|
|
X = IDCTN(Y) inverts the N-D DCT transform, returning the original
|
|
|
|
|
array if Y was obtained using Y = DCTN(X).
|
|
|
|
|
|
|
|
|
|
IDCTN(X,DIM) applies the IDCTN operation across the dimension DIM.
|
|
|
|
|
y = _dct(y, type, norm=norm)
|
|
|
|
|
return y.reshape(shape0)
|
|
|
|
|
|
|
|
|
|
Class Support
|
|
|
|
|
-------------
|
|
|
|
|
Input array can be numeric or logical. The returned array is of class
|
|
|
|
|
double.
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
|
---------
|
|
|
|
|
Narasimha M. et al, On the computation of the discrete cosine
|
|
|
|
|
transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
-------
|
|
|
|
|
RGB = imread('autumn.tif');
|
|
|
|
|
I = rgb2gray(RGB);
|
|
|
|
|
J = dctn(I);
|
|
|
|
|
imshow(log(abs(J)),[]), colormap(jet), colorbar
|
|
|
|
|
|
|
|
|
|
The commands below set values less than magnitude 10 in the DCT matrix
|
|
|
|
|
to zero, then reconstruct the image using the inverse DCT.
|
|
|
|
|
|
|
|
|
|
J(abs(J)<10) = 0;
|
|
|
|
|
K = idctn(J);
|
|
|
|
|
figure, imshow(I)
|
|
|
|
|
figure, imshow(K,[0 255])
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
dctn, idct, dct
|
|
|
|
|
|
|
|
|
|
-- Damien Garcia -- 2009/04, revised 2009/11
|
|
|
|
|
website: <a
|
|
|
|
|
href="matlab:web('http://www.biomecardio.com')">www.BiomeCardio.com</a>
|
|
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
[Y,W] = IDCTN(X,DIM,W) uses and returns the weights which are used by
|
|
|
|
|
the program. If IDCTN is required for several large arrays of same
|
|
|
|
|
size, the weights can be reused to make the algorithm faster. A typical
|
|
|
|
|
syntax is the following:
|
|
|
|
|
w = [];
|
|
|
|
|
for k = 1:10
|
|
|
|
|
[y{k},w] = idctn(x{k},[],w);
|
|
|
|
|
end
|
|
|
|
|
The weights (w) are calculated during the first call of IDCTN then
|
|
|
|
|
reused in the next calls.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
y = np.atleast_1d(y)
|
|
|
|
|
def idctn(x, type=2, axis=None, norm='ortho'):
|
|
|
|
|
y = np.atleast_1d(x)
|
|
|
|
|
shape0 = y.shape
|
|
|
|
|
|
|
|
|
|
if axis is None:
|
|
|
|
|
y = y.squeeze() # Working across singleton dimensions is useless
|
|
|
|
|
|
|
|
|
|
dimy = y.ndim
|
|
|
|
|
if dimy==1:
|
|
|
|
|
ndim = y.ndim
|
|
|
|
|
isvector = max(shape0)==y.size
|
|
|
|
|
if isvector:
|
|
|
|
|
if ndim==1:
|
|
|
|
|
y = np.atleast_2d(y)
|
|
|
|
|
y = y.T
|
|
|
|
|
# Some modifications are required if Y is a vector
|
|
|
|
|
# if isvector(y):
|
|
|
|
|
# if y.shape[0]==1:
|
|
|
|
|
# if axis==0:
|
|
|
|
|
# return y, None
|
|
|
|
|
# elif axis==1:
|
|
|
|
|
# axis=0
|
|
|
|
|
# y = y.T
|
|
|
|
|
# elif axis==1:
|
|
|
|
|
# return y, None
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
elif y.shape[0]==1:
|
|
|
|
|
if axis==0:
|
|
|
|
|
return x
|
|
|
|
|
elif axis==1:
|
|
|
|
|
axis=0
|
|
|
|
|
y = y.T
|
|
|
|
|
elif axis==1:
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
if w is None:
|
|
|
|
|
w = [0,] * dimy
|
|
|
|
|
for dim in range(dimy):
|
|
|
|
|
if axis is not None and dim!=axis:
|
|
|
|
|
continue
|
|
|
|
|
n = (dimy==1)*y.size + (dimy>1)*shape0[dim]
|
|
|
|
|
#w{dim} = exp(1i*(0:n-1)'*pi/2/n);
|
|
|
|
|
w[dim] = np.exp(1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
# --- IDCT algorithm ---
|
|
|
|
|
if np.iscomplex(y).any():
|
|
|
|
|
y = np.complex(idctn(np.real(y),axis,w),idctn(np.imag(y),axis,w))
|
|
|
|
|
y = idctn(y.real, type, axis, norm) + 1j*idctn(y.imag, type, axis, norm)
|
|
|
|
|
else:
|
|
|
|
|
for dim in range(dimy):
|
|
|
|
|
y = shiftdim(y,1)
|
|
|
|
|
y = np.asfarray(y)
|
|
|
|
|
for dim in range(ndim):
|
|
|
|
|
y = y.transpose(np.roll(range(y.ndim), -1))
|
|
|
|
|
#y = shiftdim(y,1)
|
|
|
|
|
if axis is not None and dim!=axis:
|
|
|
|
|
#y = shiftdim(y, 1)
|
|
|
|
|
continue
|
|
|
|
|
siz = y.shape
|
|
|
|
|
n = siz[-1]
|
|
|
|
|
y = _idct(y, type, norm=norm)
|
|
|
|
|
return y.reshape(shape0)
|
|
|
|
|
|
|
|
|
|
y = y.reshape((-1,n)) * w[dim]
|
|
|
|
|
y[:,0] = y[:,0]/np.sqrt(2)
|
|
|
|
|
y = (np.fft.ifft(y, n=n, axis=1)).real
|
|
|
|
|
y = y * np.sqrt(2*n)
|
|
|
|
|
|
|
|
|
|
I = np.empty(n,dtype=int)
|
|
|
|
|
I.put(np.r_[0:n:2],np.r_[0:int(n//2)+np.remainder(n,2)])
|
|
|
|
|
I.put(np.r_[1:n:2],np.r_[n-1:int(n//2)-1:-1])
|
|
|
|
|
y = y[:,I]
|
|
|
|
|
|
|
|
|
|
y = y.reshape(siz)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = y.reshape(shape0);
|
|
|
|
|
return y, w
|
|
|
|
|
#def dct(x, n=None):
|
|
|
|
|
# """
|
|
|
|
|
# Discrete Cosine Transform
|
|
|
|
|
#
|
|
|
|
|
# N-1
|
|
|
|
|
# y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
|
|
|
|
|
# n=0
|
|
|
|
|
#
|
|
|
|
|
# Examples
|
|
|
|
|
# --------
|
|
|
|
|
# >>> import numpy as np
|
|
|
|
|
# >>> x = np.arange(5)
|
|
|
|
|
# >>> np.abs(x-idct(dct(x)))<1e-14
|
|
|
|
|
# array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
# >>> np.abs(x-dct(idct(x)))<1e-14
|
|
|
|
|
# array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
#
|
|
|
|
|
# Reference
|
|
|
|
|
# ---------
|
|
|
|
|
# http://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
|
|
|
# http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/
|
|
|
|
|
# """
|
|
|
|
|
# fft = np.fft.fft
|
|
|
|
|
# x = np.atleast_1d(x)
|
|
|
|
|
#
|
|
|
|
|
# if n is None:
|
|
|
|
|
# n = x.shape[-1]
|
|
|
|
|
#
|
|
|
|
|
# if x.shape[-1] < n:
|
|
|
|
|
# n_shape = x.shape[:-1] + (n - x.shape[-1],)
|
|
|
|
|
# xx = np.hstack((x, np.zeros(n_shape)))
|
|
|
|
|
# else:
|
|
|
|
|
# xx = x[..., :n]
|
|
|
|
|
#
|
|
|
|
|
# real_x = np.all(np.isreal(xx))
|
|
|
|
|
# if (real_x and (np.remainder(n, 2) == 0)):
|
|
|
|
|
# xp = 2 * fft(np.hstack((xx[..., ::2], xx[..., ::-2])))
|
|
|
|
|
# else:
|
|
|
|
|
# xp = fft(np.hstack((xx, xx[..., ::-1])))
|
|
|
|
|
# xp = xp[..., :n]
|
|
|
|
|
#
|
|
|
|
|
# w = np.exp(-1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
#
|
|
|
|
|
# y = xp * w
|
|
|
|
|
#
|
|
|
|
|
# if real_x:
|
|
|
|
|
# return y.real
|
|
|
|
|
# else:
|
|
|
|
|
# return y
|
|
|
|
|
#
|
|
|
|
|
#def idct(x, n=None):
|
|
|
|
|
# """
|
|
|
|
|
# Inverse Discrete Cosine Transform
|
|
|
|
|
#
|
|
|
|
|
# N-1
|
|
|
|
|
# x[k] = 1/N sum w[n]*y[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
|
|
|
|
|
# n=0
|
|
|
|
|
#
|
|
|
|
|
# w(0) = 1/2
|
|
|
|
|
# w(n) = 1 for n>0
|
|
|
|
|
#
|
|
|
|
|
# Examples
|
|
|
|
|
# --------
|
|
|
|
|
# >>> import numpy as np
|
|
|
|
|
# >>> x = np.arange(5)
|
|
|
|
|
# >>> np.abs(x-idct(dct(x)))<1e-14
|
|
|
|
|
# array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
# >>> np.abs(x-dct(idct(x)))<1e-14
|
|
|
|
|
# array([ True, True, True, True, True], dtype=bool)
|
|
|
|
|
#
|
|
|
|
|
# Reference
|
|
|
|
|
# ---------
|
|
|
|
|
# http://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
|
|
|
# http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/
|
|
|
|
|
# """
|
|
|
|
|
#
|
|
|
|
|
# ifft = np.fft.ifft
|
|
|
|
|
# x = np.atleast_1d(x)
|
|
|
|
|
#
|
|
|
|
|
# if n is None:
|
|
|
|
|
# n = x.shape[-1]
|
|
|
|
|
#
|
|
|
|
|
# w = np.exp(1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
#
|
|
|
|
|
# if x.shape[-1] < n:
|
|
|
|
|
# n_shape = x.shape[:-1] + (n - x.shape[-1],)
|
|
|
|
|
# xx = np.hstack((x, np.zeros(n_shape))) * w
|
|
|
|
|
# else:
|
|
|
|
|
# xx = x[..., :n] * w
|
|
|
|
|
#
|
|
|
|
|
# real_x = np.all(np.isreal(x))
|
|
|
|
|
# if (real_x and (np.remainder(n, 2) == 0)):
|
|
|
|
|
# xx[..., 0] = xx[..., 0] * 0.5
|
|
|
|
|
# yp = ifft(xx)
|
|
|
|
|
# y = np.zeros(xx.shape, dtype=complex)
|
|
|
|
|
# y[..., ::2] = yp[..., :n / 2]
|
|
|
|
|
# y[..., ::-2] = yp[..., n / 2::]
|
|
|
|
|
# else:
|
|
|
|
|
# yp = ifft(np.hstack((xx, np.zeros_like(xx[..., 0]), np.conj(xx[..., :0:-1]))))
|
|
|
|
|
# y = yp[..., :n]
|
|
|
|
|
#
|
|
|
|
|
# if real_x:
|
|
|
|
|
# return y.real
|
|
|
|
|
# else:
|
|
|
|
|
# return y
|
|
|
|
|
#
|
|
|
|
|
#def dctn(y, axis=None, w=None):
|
|
|
|
|
# '''
|
|
|
|
|
# DCTN N-D discrete cosine transform.
|
|
|
|
|
#
|
|
|
|
|
# Y = DCTN(X) returns the discrete cosine transform of X. The array Y is
|
|
|
|
|
# the same size as X and contains the discrete cosine transform
|
|
|
|
|
# coefficients. This transform can be inverted using IDCTN.
|
|
|
|
|
#
|
|
|
|
|
# DCTN(X,axis) applies the DCTN operation across the dimension axis.
|
|
|
|
|
#
|
|
|
|
|
# Class Support
|
|
|
|
|
# -------------
|
|
|
|
|
# Input array can be numeric or logical. The returned array is of class
|
|
|
|
|
# double.
|
|
|
|
|
#
|
|
|
|
|
# Reference
|
|
|
|
|
# ---------
|
|
|
|
|
# Narasimha M. et al, On the computation of the discrete cosine
|
|
|
|
|
# transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
|
|
|
|
|
#
|
|
|
|
|
# Example
|
|
|
|
|
# -------
|
|
|
|
|
# RGB = imread('autumn.tif');
|
|
|
|
|
# I = rgb2gray(RGB);
|
|
|
|
|
# J = dctn(I);
|
|
|
|
|
# imshow(log(abs(J)),[]), colormap(jet), colorbar
|
|
|
|
|
#
|
|
|
|
|
# The commands below set values less than magnitude 10 in the DCT matrix
|
|
|
|
|
# to zero, then reconstruct the image using the inverse DCT.
|
|
|
|
|
#
|
|
|
|
|
# J(abs(J)<10) = 0;
|
|
|
|
|
# K = idctn(J);
|
|
|
|
|
# figure, imshow(I)
|
|
|
|
|
# figure, imshow(K,[0 255])
|
|
|
|
|
#
|
|
|
|
|
# See also
|
|
|
|
|
# --------
|
|
|
|
|
# idctn, dct, idct
|
|
|
|
|
# '''
|
|
|
|
|
#
|
|
|
|
|
# y = np.atleast_1d(y)
|
|
|
|
|
# shape0 = y.shape
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# if axis is None:
|
|
|
|
|
# y = y.squeeze() # Working across singleton dimensions is useless
|
|
|
|
|
# dimy = y.ndim
|
|
|
|
|
# if dimy==1:
|
|
|
|
|
# y = np.atleast_2d(y)
|
|
|
|
|
# y = y.T
|
|
|
|
|
# # Some modifications are required if Y is a vector
|
|
|
|
|
## if isvector(y):
|
|
|
|
|
## if y.shape[0]==1:
|
|
|
|
|
## if axis==0:
|
|
|
|
|
## return y, None
|
|
|
|
|
## elif axis==1:
|
|
|
|
|
## axis=0
|
|
|
|
|
## y = y.T
|
|
|
|
|
## elif axis==1:
|
|
|
|
|
## return y, None
|
|
|
|
|
#
|
|
|
|
|
# if w is None:
|
|
|
|
|
# w = [0,] * dimy
|
|
|
|
|
# for dim in range(dimy):
|
|
|
|
|
# if axis is not None and dim!=axis:
|
|
|
|
|
# continue
|
|
|
|
|
# n = (dimy==1)*y.size + (dimy>1)*shape0[dim]
|
|
|
|
|
# #w{dim} = exp(1i*(0:n-1)'*pi/2/n);
|
|
|
|
|
# w[dim] = np.exp(1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
#
|
|
|
|
|
# # --- DCT algorithm ---
|
|
|
|
|
# if np.iscomplex(y).any():
|
|
|
|
|
# y = dctn(np.real(y),axis,w) + 1j*dctn(np.imag(y),axis,w)
|
|
|
|
|
# else:
|
|
|
|
|
# for dim in range(dimy):
|
|
|
|
|
# y = shiftdim(y,1)
|
|
|
|
|
# if axis is not None and dim!=axis:
|
|
|
|
|
# #y = shiftdim(y, 1)
|
|
|
|
|
# continue
|
|
|
|
|
# siz = y.shape
|
|
|
|
|
# n = siz[-1]
|
|
|
|
|
# y = y[...,np.r_[0:n:2, 2*int(n//2)-1:0:-2]]
|
|
|
|
|
# y = y.reshape((-1,n))
|
|
|
|
|
# y = y*np.sqrt(2*n);
|
|
|
|
|
# y = (np.fft.ifft(y, n=n, axis=1) * w[dim]).real
|
|
|
|
|
# y[:,0] = y[:,0]/np.sqrt(2)
|
|
|
|
|
# y = y.reshape(siz)
|
|
|
|
|
#
|
|
|
|
|
# #end
|
|
|
|
|
# #end
|
|
|
|
|
#
|
|
|
|
|
# return y.reshape(shape0), w
|
|
|
|
|
#
|
|
|
|
|
#def idctn(y, axis=None, w=None):
|
|
|
|
|
# '''
|
|
|
|
|
# IDCTN N-D inverse discrete cosine transform.
|
|
|
|
|
# X = IDCTN(Y) inverts the N-D DCT transform, returning the original
|
|
|
|
|
# array if Y was obtained using Y = DCTN(X).
|
|
|
|
|
#
|
|
|
|
|
# IDCTN(X,DIM) applies the IDCTN operation across the dimension DIM.
|
|
|
|
|
#
|
|
|
|
|
# Class Support
|
|
|
|
|
# -------------
|
|
|
|
|
# Input array can be numeric or logical. The returned array is of class
|
|
|
|
|
# double.
|
|
|
|
|
#
|
|
|
|
|
# Reference
|
|
|
|
|
# ---------
|
|
|
|
|
# Narasimha M. et al, On the computation of the discrete cosine
|
|
|
|
|
# transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
|
|
|
|
|
#
|
|
|
|
|
# Example
|
|
|
|
|
# -------
|
|
|
|
|
# RGB = imread('autumn.tif');
|
|
|
|
|
# I = rgb2gray(RGB);
|
|
|
|
|
# J = dctn(I);
|
|
|
|
|
# imshow(log(abs(J)),[]), colormap(jet), colorbar
|
|
|
|
|
#
|
|
|
|
|
# The commands below set values less than magnitude 10 in the DCT matrix
|
|
|
|
|
# to zero, then reconstruct the image using the inverse DCT.
|
|
|
|
|
#
|
|
|
|
|
# J(abs(J)<10) = 0;
|
|
|
|
|
# K = idctn(J);
|
|
|
|
|
# figure, imshow(I)
|
|
|
|
|
# figure, imshow(K,[0 255])
|
|
|
|
|
#
|
|
|
|
|
# See also
|
|
|
|
|
# --------
|
|
|
|
|
# dctn, idct, dct
|
|
|
|
|
#
|
|
|
|
|
# -- Damien Garcia -- 2009/04, revised 2009/11
|
|
|
|
|
# website: <a
|
|
|
|
|
# href="matlab:web('http://www.biomecardio.com')">www.BiomeCardio.com</a>
|
|
|
|
|
#
|
|
|
|
|
# ----------
|
|
|
|
|
# [Y,W] = IDCTN(X,DIM,W) uses and returns the weights which are used by
|
|
|
|
|
# the program. If IDCTN is required for several large arrays of same
|
|
|
|
|
# size, the weights can be reused to make the algorithm faster. A typical
|
|
|
|
|
# syntax is the following:
|
|
|
|
|
# w = [];
|
|
|
|
|
# for k = 1:10
|
|
|
|
|
# [y{k},w] = idctn(x{k},[],w);
|
|
|
|
|
# end
|
|
|
|
|
# The weights (w) are calculated during the first call of IDCTN then
|
|
|
|
|
# reused in the next calls.
|
|
|
|
|
# '''
|
|
|
|
|
#
|
|
|
|
|
# y = np.atleast_1d(y)
|
|
|
|
|
# shape0 = y.shape
|
|
|
|
|
#
|
|
|
|
|
# if axis is None:
|
|
|
|
|
# y = y.squeeze() # Working across singleton dimensions is useless
|
|
|
|
|
#
|
|
|
|
|
# dimy = y.ndim
|
|
|
|
|
# if dimy==1:
|
|
|
|
|
# y = np.atleast_2d(y)
|
|
|
|
|
# y = y.T
|
|
|
|
|
# # Some modifications are required if Y is a vector
|
|
|
|
|
## if isvector(y):
|
|
|
|
|
## if y.shape[0]==1:
|
|
|
|
|
## if axis==0:
|
|
|
|
|
## return y, None
|
|
|
|
|
## elif axis==1:
|
|
|
|
|
## axis=0
|
|
|
|
|
## y = y.T
|
|
|
|
|
## elif axis==1:
|
|
|
|
|
## return y, None
|
|
|
|
|
##
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# if w is None:
|
|
|
|
|
# w = [0,] * dimy
|
|
|
|
|
# for dim in range(dimy):
|
|
|
|
|
# if axis is not None and dim!=axis:
|
|
|
|
|
# continue
|
|
|
|
|
# n = (dimy==1)*y.size + (dimy>1)*shape0[dim]
|
|
|
|
|
# #w{dim} = exp(1i*(0:n-1)'*pi/2/n);
|
|
|
|
|
# w[dim] = np.exp(1j * np.arange(n) * np.pi / (2 * n))
|
|
|
|
|
# # --- IDCT algorithm ---
|
|
|
|
|
# if np.iscomplex(y).any():
|
|
|
|
|
# y = np.complex(idctn(np.real(y),axis,w),idctn(np.imag(y),axis,w))
|
|
|
|
|
# else:
|
|
|
|
|
# for dim in range(dimy):
|
|
|
|
|
# y = shiftdim(y,1)
|
|
|
|
|
# if axis is not None and dim!=axis:
|
|
|
|
|
# #y = shiftdim(y, 1)
|
|
|
|
|
# continue
|
|
|
|
|
# siz = y.shape
|
|
|
|
|
# n = siz[-1]
|
|
|
|
|
#
|
|
|
|
|
# y = y.reshape((-1,n)) * w[dim]
|
|
|
|
|
# y[:,0] = y[:,0]/np.sqrt(2)
|
|
|
|
|
# y = (np.fft.ifft(y, n=n, axis=1)).real
|
|
|
|
|
# y = y * np.sqrt(2*n)
|
|
|
|
|
#
|
|
|
|
|
# I = np.empty(n,dtype=int)
|
|
|
|
|
# I.put(np.r_[0:n:2],np.r_[0:int(n//2)+np.remainder(n,2)])
|
|
|
|
|
# I.put(np.r_[1:n:2],np.r_[n-1:int(n//2)-1:-1])
|
|
|
|
|
# y = y[:,I]
|
|
|
|
|
#
|
|
|
|
|
# y = y.reshape(siz)
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# y = y.reshape(shape0);
|
|
|
|
|
# return y, w
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -323,33 +570,73 @@ def no_leading_ones(x):
|
|
|
|
|
return x[first:]
|
|
|
|
|
|
|
|
|
|
def shiftdim(x, n=None):
|
|
|
|
|
'''
|
|
|
|
|
Shift dimensions
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
x : array
|
|
|
|
|
n : int
|
|
|
|
|
|
|
|
|
|
Notes
|
|
|
|
|
-----
|
|
|
|
|
Shiftdim is handy for functions that intend to work along the first
|
|
|
|
|
non-singleton dimension of the array.
|
|
|
|
|
|
|
|
|
|
If n is None returns the array with the same number of elements as X but
|
|
|
|
|
with any leading singleton dimensions removed.
|
|
|
|
|
|
|
|
|
|
When n is positive, shiftdim shifts the dimensions to the left and wraps
|
|
|
|
|
the n leading dimensions to the end.
|
|
|
|
|
|
|
|
|
|
When n is negative, shiftdim shifts the dimensions to the right and pads
|
|
|
|
|
with singletons.
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
reshape, squeeze
|
|
|
|
|
'''
|
|
|
|
|
if n is None:
|
|
|
|
|
# returns the array B with the same number of
|
|
|
|
|
# elements as X but with any leading singleton
|
|
|
|
|
# dimensions removed.
|
|
|
|
|
return x.reshape(no_leading_ones(x.shape))
|
|
|
|
|
elif n>=0:
|
|
|
|
|
# When n is positive, shiftdim shifts the dimensions
|
|
|
|
|
# to the left and wraps the n leading dimensions to the end.
|
|
|
|
|
return x.transpose(np.roll(range(x.ndim), -n))
|
|
|
|
|
else:
|
|
|
|
|
# When n is negative, shiftdim shifts the dimensions
|
|
|
|
|
# to the right and pads with singletons.
|
|
|
|
|
return x.reshape((1,)*-n+x.shape)
|
|
|
|
|
|
|
|
|
|
def test_dctn():
|
|
|
|
|
a = np.arange(12).reshape((3,-1))
|
|
|
|
|
#y = dct(a)
|
|
|
|
|
#x = idct(y)
|
|
|
|
|
#print(y)
|
|
|
|
|
#print(x)
|
|
|
|
|
|
|
|
|
|
print(a)
|
|
|
|
|
yn = dctn(a)[0]
|
|
|
|
|
xn = idctn(yn)[0]
|
|
|
|
|
|
|
|
|
|
a = np.arange(12) #.reshape((3,-1))
|
|
|
|
|
print('a = ', a)
|
|
|
|
|
print(' ')
|
|
|
|
|
y = dct(a)
|
|
|
|
|
x = idct(y)
|
|
|
|
|
print('y = dct(a)')
|
|
|
|
|
print(y)
|
|
|
|
|
print('x = idct(y)')
|
|
|
|
|
print(x)
|
|
|
|
|
print(' ')
|
|
|
|
|
|
|
|
|
|
# y1 = dct1(a)
|
|
|
|
|
# x1 = idct1(y)
|
|
|
|
|
# print('y1 = dct1(a)')
|
|
|
|
|
# print(y1)
|
|
|
|
|
# print('x1 = idct1(y)')
|
|
|
|
|
# print(x1)
|
|
|
|
|
# print(' ')
|
|
|
|
|
|
|
|
|
|
yn = dctn(a)
|
|
|
|
|
xn = idctn(yn)
|
|
|
|
|
print('yn = dctn(a)')
|
|
|
|
|
print(yn)
|
|
|
|
|
print('xn = idctn(yn)')
|
|
|
|
|
print(xn)
|
|
|
|
|
print(' ')
|
|
|
|
|
|
|
|
|
|
# yn1 = dctn1(a)
|
|
|
|
|
# xn1 = idctn1(yn1)
|
|
|
|
|
# print('yn1 = dctn1(a)')
|
|
|
|
|
# print(yn1)
|
|
|
|
|
# print('xn1 = idctn1(yn)')
|
|
|
|
|
# print(xn1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|