|
|
@ -3067,7 +3067,7 @@ def smoothn(data, s=None, weight=None, robust=False, z0=None, tolz=1e-3, maxiter
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
z = np.zeros(sizy)
|
|
|
|
z = np.zeros(sizy)
|
|
|
|
z0 = z
|
|
|
|
z0 = z
|
|
|
|
y[1-IsFinite] = 0 # arbitrary values for missing y-data
|
|
|
|
y[~IsFinite] = 0 # arbitrary values for missing y-data
|
|
|
|
|
|
|
|
|
|
|
|
tol = 1
|
|
|
|
tol = 1
|
|
|
|
RobustIterativeProcess = True
|
|
|
|
RobustIterativeProcess = True
|
|
|
@ -3185,9 +3185,10 @@ def InitialGuess(y,I):
|
|
|
|
if (1-I).any():
|
|
|
|
if (1-I).any():
|
|
|
|
|
|
|
|
|
|
|
|
if True: #license('test','image_toolbox')
|
|
|
|
if True: #license('test','image_toolbox')
|
|
|
|
z, L = distance_transform_edt(1-I, return_indices=True)
|
|
|
|
notI = ~I
|
|
|
|
|
|
|
|
z, L = distance_transform_edt(notI, return_indices=True)
|
|
|
|
#[z,L] = bwdist(I);
|
|
|
|
#[z,L] = bwdist(I);
|
|
|
|
z[1-I] = y[L[1-I]]
|
|
|
|
z[notI] = y[L.flat[notI]]
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
#% If BWDIST does not exist, NaN values are all replaced with the
|
|
|
|
#% If BWDIST does not exist, NaN values are all replaced with the
|
|
|
|
#% same scalar. The initial guess is not optimal and a warning
|
|
|
|
#% same scalar. The initial guess is not optimal and a warning
|
|
|
@ -3225,7 +3226,7 @@ def test_smoothn_1d():
|
|
|
|
plt.show()
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
def test_smoothn_2d():
|
|
|
|
def test_smoothn_2d():
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
#import mayavi.mlab as plt
|
|
|
|
#import mayavi.mlab as plt
|
|
|
|
xp = np.r_[0:1:.02]
|
|
|
|
xp = np.r_[0:1:.02]
|
|
|
|
[x,y] = np.meshgrid(xp,xp)
|
|
|
|
[x,y] = np.meshgrid(xp,xp)
|
|
|
@ -3471,10 +3472,21 @@ def _logitinv(x):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
|
|
|
|
def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
|
|
|
|
|
|
|
|
import scipy.stats as st
|
|
|
|
|
|
|
|
dist = st.norm
|
|
|
|
|
|
|
|
scale1 = 0.3
|
|
|
|
|
|
|
|
norm1 = dist.pdf(-1, loc=-1, scale=scale1) + dist.pdf(-1, loc=1, scale=scale1)
|
|
|
|
|
|
|
|
fun1 = lambda x : (dist.pdf(x, loc=-1, scale=scale1) + dist.pdf(x, loc=1, scale=scale1))/norm1
|
|
|
|
|
|
|
|
|
|
|
|
x = np.sort(6*np.random.rand(n,1)-3, axis=0)
|
|
|
|
x = np.sort(6*np.random.rand(n,1)-3, axis=0)
|
|
|
|
y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
|
|
|
|
|
|
|
|
|
|
|
|
y = (fun1(x)>np.random.rand(n, 1)).ravel()
|
|
|
|
|
|
|
|
#y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
|
|
|
|
x = x.ravel()
|
|
|
|
x = x.ravel()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alpha=0.05
|
|
|
|
|
|
|
|
z0 = -_invnorm(alpha/2)
|
|
|
|
|
|
|
|
|
|
|
|
kernel = Kernel('gauss',fun=fun)
|
|
|
|
kernel = Kernel('gauss',fun=fun)
|
|
|
|
hopt = kernel.get_smoothing(x)
|
|
|
|
hopt = kernel.get_smoothing(x)
|
|
|
|
if hs is None:
|
|
|
|
if hs is None:
|
|
|
@ -3487,28 +3499,64 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
|
|
|
|
y = yi[i]
|
|
|
|
y = yi[i]
|
|
|
|
|
|
|
|
|
|
|
|
xmin, xmax = x.min(), x.max()
|
|
|
|
xmin, xmax = x.min(), x.max()
|
|
|
|
ni = int(2*(xmax-xmin)/hopt)
|
|
|
|
ni = int((xmax-xmin)/hopt)
|
|
|
|
print(ni)
|
|
|
|
print(ni)
|
|
|
|
|
|
|
|
print(xmin, xmax)
|
|
|
|
|
|
|
|
|
|
|
|
xi = np.linspace(xmin-hopt,xmax+hopt, ni)
|
|
|
|
xi = np.linspace(xmin-hopt,xmax+hopt, ni)
|
|
|
|
|
|
|
|
xiii = np.linspace(xmin-hopt,xmax+hopt, 4*ni)
|
|
|
|
c = gridcount(x, xi)
|
|
|
|
c = gridcount(x, xi)
|
|
|
|
c0 = gridcount(x[y==True],xi)
|
|
|
|
c0 = gridcount(x[y==True],xi)
|
|
|
|
|
|
|
|
|
|
|
|
yi = np.where(c==0, 0, c0/c)
|
|
|
|
yi = np.where(c==0, 0, c0/c)
|
|
|
|
logyi = np.log(yi).clip(min=-15)
|
|
|
|
yi[yi==0] = yi[yi>0].min()/sqrt(n)
|
|
|
|
|
|
|
|
yi[yi==1] = 1-(1-yi[yi<1].max())/sqrt(n)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logity =_logit(yi)
|
|
|
|
|
|
|
|
logity[logity==-40]=np.nan
|
|
|
|
|
|
|
|
slogity = smoothn(logity, robust=False)
|
|
|
|
|
|
|
|
sa1 = sqrt(evar(logity))
|
|
|
|
|
|
|
|
sa = (slogity-logity).std()
|
|
|
|
|
|
|
|
print('estd = %g %g' % (sa,sa1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plo3 = _logitinv(slogity-z0*sa)
|
|
|
|
|
|
|
|
pup3 = _logitinv(slogity+z0*sa)
|
|
|
|
|
|
|
|
syi = _logitinv(slogity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ymin = np.log(yi[yi>0].min())-1
|
|
|
|
|
|
|
|
logyi = np.log(yi).clip(min=ymin)
|
|
|
|
#plt.scatter(xi,logyi)
|
|
|
|
#plt.scatter(xi,logyi)
|
|
|
|
#return
|
|
|
|
#return
|
|
|
|
#print(logyi)
|
|
|
|
#print(logyi)
|
|
|
|
dx = xi[1]-xi[0]
|
|
|
|
dx = xi[1]-xi[0]
|
|
|
|
ckreg = KDE(x,hs=hs)
|
|
|
|
ckreg = KDE(x,hs=hs)
|
|
|
|
ci = ckreg.eval_grid(xi)*n*dx
|
|
|
|
ci = ckreg.eval_grid_fast(xiii)*n*dx
|
|
|
|
|
|
|
|
|
|
|
|
gkreg = KRegression(xi, yi, hs=hs, xmin=xmin-2*hopt,xmax=xmax+2*hopt)
|
|
|
|
gkreg = KRegression(xi, logity, hs=hs/2, xmin=xmin-2*hopt,xmax=xmax+2*hopt)
|
|
|
|
fg = gkreg.eval_grid(xi,output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
fg = gkreg.eval_grid(xi,output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
|
|
|
|
sa = (fg.data-logity).std()
|
|
|
|
|
|
|
|
sa2 = iqrange(fg.data-logity) / 1.349
|
|
|
|
|
|
|
|
print('sa=%g %g' % (sa, sa2))
|
|
|
|
|
|
|
|
sa = min(sa,sa2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(1)
|
|
|
|
|
|
|
|
plt.plot(xi, slogity-logity,'r.')
|
|
|
|
|
|
|
|
#plt.plot(xi, logity-,'b.')
|
|
|
|
|
|
|
|
plt.plot(xi, fg.data-logity, 'b.')
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
# return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fg = gkreg.eval_grid(xiii,output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plo3 = _logitinv(fg.data-z0*sa)
|
|
|
|
|
|
|
|
pup3 = _logitinv(fg.data+z0*sa)
|
|
|
|
|
|
|
|
fg.data = _logitinv(fg.data)
|
|
|
|
pi = fg.data
|
|
|
|
pi = fg.data
|
|
|
|
|
|
|
|
|
|
|
|
alpha=0.05
|
|
|
|
|
|
|
|
z0 = -_invnorm(alpha/2)
|
|
|
|
|
|
|
|
# ref Casella and Berger (1990) "Statistical inference" pp444
|
|
|
|
# ref Casella and Berger (1990) "Statistical inference" pp444
|
|
|
|
a = 2*pi + z0**2/(ci+1e-16)
|
|
|
|
a = 2*pi + z0**2/(ci+1e-16)
|
|
|
|
b = 2*(1+z0**2/(ci+1e-16))
|
|
|
|
b = 2*(1+z0**2/(ci+1e-16))
|
|
|
@ -3519,15 +3567,18 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
|
|
|
|
#print(fg.data)
|
|
|
|
#print(fg.data)
|
|
|
|
#fg.data = np.exp(fg.data)
|
|
|
|
#fg.data = np.exp(fg.data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(2)
|
|
|
|
fg.plot(label='KReg grid')
|
|
|
|
fg.plot(label='KReg grid')
|
|
|
|
|
|
|
|
|
|
|
|
kreg = KRegression(x, y, hs=hs)
|
|
|
|
kreg = KRegression(x, y, hs=hs)
|
|
|
|
f = kreg(output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
f = kreg(xiii,output='plotobj', title='Kernel regression n=%d, %s=%g' % (n,fun,hs), plotflag=1)
|
|
|
|
f.plot(label='KRegression')
|
|
|
|
f.plot(label='KRegression')
|
|
|
|
|
|
|
|
labtxt = '%d CI' % (int(100*(1-alpha)))
|
|
|
|
plt.plot(xi, pup,'r--', xi, plo,'r--', label='%d CI' % (int(100*(1-alpha))))
|
|
|
|
plt.plot(xi, syi, 'k', label='smoothn')
|
|
|
|
plt.plot(xi, pup2,'r:', xi, plo2,'r:', label='%d CI2' % (int(100*(1-alpha))))
|
|
|
|
plt.fill_between(xiii, pup3, plo3, alpha=0.1,color='r', linestyle='--', label=labtxt)
|
|
|
|
plt.plot(xi, 0.5*np.cos(xi)+.5, label='True model')
|
|
|
|
plt.fill_between(xiii, pup2, plo2,alpha = 0.05, color='b', linestyle=':',label='%d CI2' % (int(100*(1-alpha))))
|
|
|
|
|
|
|
|
#plt.plot(xiii, 0.5*np.cos(xiii)+.5, 'r', label='True model')
|
|
|
|
|
|
|
|
plt.plot(xiii, fun1(xiii), 'r', label='True model')
|
|
|
|
plt.scatter(xi,yi, label='data')
|
|
|
|
plt.scatter(xi,yi, label='data')
|
|
|
|
print(np.nanmax(f.data))
|
|
|
|
print(np.nanmax(f.data))
|
|
|
|
print(kreg.tkde.tkde.hs)
|
|
|
|
print(kreg.tkde.tkde.hs)
|
|
|
@ -3598,6 +3649,6 @@ if __name__ == '__main__':
|
|
|
|
#kde_demo2()
|
|
|
|
#kde_demo2()
|
|
|
|
#kreg_demo1(fast=True)
|
|
|
|
#kreg_demo1(fast=True)
|
|
|
|
#kde_gauss_demo()
|
|
|
|
#kde_gauss_demo()
|
|
|
|
kreg_demo2(n=100)
|
|
|
|
kreg_demo2(n=7000,symmetric=True,fun='hisj')
|
|
|
|
#test_smoothn_2d()
|
|
|
|
#test_smoothn_2d()
|
|
|
|
#test_smoothn_cardioid()
|
|
|
|
#test_smoothn_cardioid()
|