Added RegLogit to core.py (not finished)

master
per.andreas.brodtkorb 13 years ago
parent e2620cbbec
commit 14e65da072

@ -7,6 +7,7 @@ import numpy as np
from numpy import inf
from numpy import atleast_1d, nan, ndarray, sqrt, vstack, ones, where, zeros
from numpy import arange, floor, linspace, asarray #, reshape, repeat, product
from time import gmtime, strftime
__all__ = ['edf', 'edfcnd','reslife', 'dispersion_idx','decluster','findpot',
@ -14,6 +15,12 @@ __all__ = ['edf', 'edfcnd','reslife', 'dispersion_idx','decluster','findpot',
arr = asarray
def now():
'''
Return current date and time as a string
'''
return strftime("%a, %d %b %Y %H:%M:%S", gmtime())
def valarray(shape, value=nan, typecode=None):
"""Return an array of all value.
"""
@ -646,6 +653,668 @@ def extremal_idx(ti):
ei = min(1, 2*np.mean(t-1)**2/np.mean((t-1)*(t-2)))
return ei
class RegLogit(object):
'''
REGLOGIT Fit ordinal logistic regression model.
CALL model = reglogit (options)
model = fitted model object with methods
.compare() : Compare small LOGIT object versus large one
.predict() : Predict from a fitted LOGIT object
.summary() : Display summary of fitted LOGIT object.
y = vector of K ordered categories
x = column vectors of covariates
options = struct defining performance of REGLOGIT
.maxiter : maximum number of iterations.
.accuracy : accuracy in convergence.
.betastart : Start value for BETA (default 0)
.thetastart : Start value for THETA (default depends on Y)
.alpha : Confidence coefficent (default 0.05)
.verbose : 1 display summary info about fitted model
2 display convergence info in each iteration
otherwise no action
.deletecolinear : If true delete colinear covarites (default)
Methods
.predict : Predict from a fitted LOGIT object
.summary : Display summary of fitted LOGIT object.
.compare : Compare small LOGIT versus large one
Suppose Y takes values in K ordered categories, and let
gamma_i (x) be the cumulative probability that Y
falls in one of the first i categories given the covariate
X. The ordinal logistic regression model is
logit (mu_i (x)) = theta_i + beta' * x, i = 1...k-1
The number of ordinal categories, K, is taken to be the number
of distinct values of round (Y). If K equals 2,
Y is binary and the model is ordinary logistic regression. The
matrix X is assumed to have full column rank.
Given Y only, theta = REGLOGIT(Y) fits the model with baseline logit odds
only.
Example
y=[1 1 2 1 3 2 3 2 3 3]'
x = (1:10)'
b = reglogit(y,x)
b.display() % members and methods
b.get() % return members
b.summary()
[mu,plo,pup] = b.predict();
plot(x,mu,'g',x,plo,'r:',x,pup,'r:')
y2 = [zeros(5,1);ones(5,1)];
x1 = [29,30,31,31,32,29,30,31,32,33];
x2 = [62,83,74,88,68,41,44,21,50,33];
X = [x1;x2].';
b2 = reglogit(y2,X);
b2.summary();
b21 = reglogit(y2,X(:,1));
b21.compare(b2)
See also regglm, reglm, regnonlm
'''
#% Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2005, 2007
#% Kurt Hornik
#%
#% Reglogit is free software; you can redistribute it and/or modify it
#% under the terms of the GNU General Public License as published by
#% the Free Software Foundation; either version 3 of the License, or (at
#% your option) any later version.
#%
#% Reglogit is distributed in the hope that it will be useful, but
#% WITHOUT ANY WARRANTY; without even the implied warranty of
#% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
#% General Public License for more details.
#%
#% You should have received a copy of the GNU General Public License
#% along with Reglogit; see the file COPYING. If not, see
#% <http://www.gnu.org/licenses/>.
#% Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>,
#% U of Queensland, Australia, on Nov 19, 1990. Last revision Aug 3,
#% 1992.
#
#% Author: Gordon K Smyth <gks@maths.uq.oz.au>,
#% Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at>
#% Revised by: pab
#% -renamed from logistic_regression to reglogit
#% -added predict, summary and compare
#% Description: Ordinal logistic regression
#
#% Uses the auxiliary functions logistic_regression_derivatives and
#% logistic_regression_likelihood.
def __init__(self, maxiter=500,accuracy=1e-6, alpha=0.05, deletecolinear=True, verbose=False):
self.maxiter =maxiter
self.accuracy = accuracy
self.alpha = alpha
self.deletcolinear = deletecolinear
self.verbose = False
self.family = None
self.link = None
self.numvar = None
self.numobs = None
self.numk = None
self.df = None
self.df_null = None
self.params = None
self.params_ci = None
self.params_cov = None
self.params_std = None
self.params_corr = None
self.params_tstat = None
self.params_pvalue = None
self.mu = None
self.eta = None
self.X = None
self.Y = None
self.theta = None
self.beta = None
self.residual = None
self.residual1d = None
self.deviance = None
self.deviance_null = None
self.d2L = None
self.dL = None
self.dispersionfit = None
self.dispersion = 1
self.R2 = None
self.R2adj = None
self.numiter = None
self.converged = None
self.note = ''
self.date = now()
def _logit(self, p):
return np.log(p)-np.log1p(-p)
def _logitinv(self, x):
return 1.0/(np.exp(-x)+1)
def check_xy(self, y, X):
y = np.round(np.atleast_2d(y))
my, ny = y.shape
if X is None:
X = np.zeros((my, 0))
elif self.deletecolinear:
X = np.atleast_2d(X)
# Make sure X is full rank
s = np.linalg.svd(X)[1]
tol = max(size(X)) * np.finfo(s.max()).eps
ix = np.flatnonzero(s>tol)
iy = np.flatnonzero(s<=tol)
if len(ix):
X = X[:, ix]
txt = [' %d,' % i for i in iy]
txt[-1] = ' %d' % iy[-1]
warnings.warn('Covariate matrix is singular. Removing column(s):%s',txt)
[mx, nx] = X.shape
if (mx != my):
raise ValueError('x and y must have the same number of observations');
return y, X
def fit(self, y, X=None, theta0=None, beta0=None):
'''
Member variables
.df : degrees of freedom for error.
.params : estimated model parameters
.params_ci : 100(1-alpha)% confidence interval for model parameters
.params_tstat : t statistics for model's estimated parameters.
.params_pvalue: p value for model's estimated parameters.
.params_std : standard errors for estimated parameters
.params_corr : correlation matrix for estimated parameters.
.mu : fitted values for the model.
.eta : linear predictor for the model.
.residual : residual for the model (Y-E(Y|X)).
.dispersnfit : The estimated error variance
.deviance : deviance for the model equal minus twice the log-likelihood.
.d2L : Hessian matrix (double derivative of log-likelihood)
.dL : First derivative of loglikelihood w.r.t. THETA and BETA.
'''
self.family = 'multinomial';
self.link = 'logit';
y, X = self.check_xy(y, X)
# initial calculations
tol = self.accuracy
incr = 10
decr = 2
ymin = y.min()
ymax = y.max()
yrange = ymax - ymin
z = (y * ones((1, yrange))) == ((y * 0 + 1) * np.arange(ymin, ymax))
z1 = (y * ones((1, yrange))) == ((y * 0 + 1) * np.arange(ymin + 1, ymax+1))
z = z[:, np.flatnonzero(z.any(axis=0))];
z1 = z1[:, np.flatnonzero(z1.any(axis=0))]
[mz, nz] = z.shape
[mx, nx] = X.shape
[my, ny] = y.shape
g = z.sum(axis=0).cumsum() / my
theta00 = np.log(g / (1 - g))
beta00 = np.zeros((nx, 1))
# starting values
if theta0 is None:
theta0 = theta00
if beta0 is None:
beta0 = beta00
tb = np.vstack((theta0, beta0))
# likelihood and derivatives at starting values
[dev,p,g, g1] = logistic_regression_likelihood (y, X, tb, z, z1);
[dl, d2l] = logistic_regression_derivatives (X, z, z1, g, g1, p);
epsilon = std (d2l) / 1000;
if np.any(beta) or np.any(theta!=theta0):
tb0 = np.vstack((theta00,beta00))
nulldev = logistic_regression_likelihood (y, X, tb0, z, z1);
else:
nulldev = dev
# maximize likelihood using Levenberg modified Newton's method
iter = 0;
stop = False
while not stop:
iter += 1
tbold = tb;
devold = dev;
tb = tbold - np.linalg.lstsq(d2l, dl)
[dev,p,g, g1] = logistic_regression_likelihood (y, X, tb, z, z1);
if ((dev - devold) / (dl.T * (tb - tbold)) < 0):
epsilon = epsilon / decr
else:
while ((dev - devold) / (dl.T * (tb - tbold)) > 0):
epsilon = epsilon * incr;
if (epsilon > 1e+15):
raise ValueError('epsilon too large');
tb = tbold - np.linalg.lstsq(d2l - epsilon * np.eye(d2l.shape), dl);
[dev,p,g, g1] = logistic_regression_likelihood (y, X, tb, z, z1);
print('epsilon %g' % epsilon)
#end %while
#end else
[dl, d2l] = logistic_regression_derivatives (X, z, z1, g, g1, p);
if (self.verbose>1):
print('Iter: %d, Deviance: %8.6f',iter,dev)
print('First derivative');
print(dl.T);
print('Eigenvalues of second derivative');
print(np.linalg.eig(d2l)[0].T);
#end
#end
stop = abs (dl.T * np.linalg.lstq(d2l, dl) / length (dl)) <= tol or iter>self.maxiter
#end %while
#% tidy up output
theta = tb[:nz, 0]
beta = tb[nz:(nz + nx), 1]
pcov = np.linalg.pinv(-d2l)
se = sqrt(np.diag (pcov))
if (nx > 0):
eta = ((X * beta) * ones (1, nz)) + ((y * 0 + 1) * theta.T);
else:
eta = (y * 0 + 1) * theta.T;
#end
gammai = np.diff(np.hstack(((y * 0), self.logitinv(eta), (y * 0 + 1))),1,2)
k0 = min(y)
mu = (k0-1)+np.dot(gammai,np.arange(1,nz+2).T); #% E(Y|X)
r = np.corrcoef(np.hstack((y,mu)))
R2 = r[0,1]**2; #coefficient of determination
R2adj = max(1 - (1-R2)* (my-1)/(my-nx-nz-1),0); # adjusted coefficient of determination
res = y-mu;
if nz==1:
self.family = 'binomial';
else:
self.family = 'multinomial';
self.link = 'logit';
self.numvar = nx+nz;
self.numobs = my;
self.numk = nz+1;
self.df = max(my-nx-nz,0);
self.df_null = my-nz; #nulldf; nulldf = n - nz;
self.params = tb[:(nz + nx),0].T;
self.params_ci = 1;
self.params_std = se.T;
self.params_cov = pcov
self.params_tstat = (self.params/self.params_std);
if False: # % options.estdispersn %dispersion_parameter=='mean_deviance'
self.params_pvalue=2.*cdft(-abs(self.params_tstat),self.df);
bcrit = -se.T*invt(self.alpha/2,self.df);
else:
self.params_pvalue=2.*cdfnorm(-abs(self.params_tstat));
bcrit = -se.T*invnorm(self.alpha/2);
#end
self.params_ci = np.vstack((self.params+bcrit,self.params-bcrit))
self.mu = gammai;
self.eta = self.logit(gammai);
self.X = X;
self.theta = theta;
self.beta = beta;
self.gamma = gammai;
self.residual = res.T;
self.residualD = sign(self.residual)*sqrt(-2*log(p)).T;
self.deviance = dev;
self.deviance_null = nulldev;
self.d2L = d2l;
self.dL = dl.T;
self.dispersnfit=1;
self.dispersn = 1;
self.R2 = R2;
self.R2adj = R2adj;
self.numiter = iter;
self.converged = iter<self.maxiter;
self.note = '';
self.date = now()
if (self.verbose):
self.summary()
def compare(self, object2):
''' Compare small LOGIT versus large one
CALL [pvalue] = compare(object2)
The standard hypothesis test of a larger linear regression
model against a smaller one. The standard Chi2-test is used.
The output is the p-value, the residuals from the smaller
model, and the residuals from the larger model.
See also fitls
'''
try:
if self.numvar>object2.numvar:
devL = self.deviance;
nL = self.numvar;
dfL = self.df;
Al = self.X;
disprsn = self.dispersionfit;
devs = object2.deviance;
ns = object2.numvar;
dfs = object2.df;
As = object2.X;
else:
devL = object2.deviance;
nL = object2.numvar;
dfL = object2.df;
Al = object2.X;
disprsn = object2.dispersionfit;
devs = self.deviance;
ns = self.numvar;
dfs = self.df;
As = self.X;
#end
if (((As-np.dot(Al*np.linalg.lstsq(Al,As)))>500*np.finfo(float).eps).any() or
object2.family!=self.family or object2.link!=self.link):
warnings.warn('Small model not included in large model, result is rubbish!')
except:
raise ValueError('Apparently not a valid regression object')
pmq = np.abs(nL-ns);
print(' ')
print(' Analysis of Deviance')
if False: # %options.estdispersn
localstat = abs(devL-devs)/disprsn/pmq;
localpvalue = 1-cdff(localstat, pmq, dfL)
print('Model DF Residual deviance F-stat Pr(>F)')
else:
localstat = abs(devL-devs)/disprsn;
localpvalue = 1-cdfchi2(localstat,pmq)
print('Model DF Residual deviance Chi2-stat Pr(>Chi2)')
#end
print('Small %d %12.4f %12.4f %12.4f' % (dfs,devs,localstat,localpvalue))
print('Full %d %12.4f' % (dfL,devL))
print(' ')
return localpvalue
def anode(self):
print(' ')
print(' Analysis of Deviance')
if False: # %options.estdispersn
localstat = abs(self.deviance_null-self.deviance)/self.dispersnfit/(self.numvar-1);
localpvalue = 1-cdff(localstat,self.numvar-1,self.df);
print('Model DF Residual deviance F-stat Pr(>F)')
else:
localstat = abs(self.deviance_null-self.deviance)/self.dispersnfit;
localpvalue = 1-cdfchi2(localstat,self.numvar-1);
print('Model DF Residual deviance Chi2-stat Pr(>Chi2)')
#end
print('Null %d %12.4f %12.4f %12.4f' % (self.df_null,self.deviance_null,localstat,localpvalue))
print('Full %d %12.4f' % (self.df,self.deviance))
print(' ')
print(' R2 = %2.4f, R2adj = %2.4f' % (self.R2,self.R2adj))
print(' ')
return localpvalue
def summary(self):
txtlink = self.link;
print('Call:')
print('reglogit(formula = %s(Pr(grp(y)<=i)) ~ theta_i+beta*x, family = %s)' %(txtlink,self.family))
print(' ')
print('Deviance Residuals:')
m,q1,me, q3,M = np.percentile(self.residualD,q=[0, 25, 50, 75, 100])
print(' Min 1Q Median 3Q Max ')
print('%2.4f %2.4f %2.4f %2.4f %2.4f' % (m, q1, me, q3, M))
print(' ')
print(' Coefficients:')
if False: # %options.estdispersn
print(' Estimate Std. Error t value Pr(>|t|)')
else:
print(' Estimate Std. Error z value Pr(>|z|)')
#end
e, s, z, p = self.params, self.params_std, self.params_tstat, self.params_pvalue
for i in range(self.numk):
print('theta_%d %2.4f %2.4f %2.4f %2.4f' % (i,e[i],s[i], z[i], p[i]))
for i in range(self.numk, self.numvar):
print(' beta_%d %2.4f %2.4f %2.4f %2.4f\n' % (i-self.numk,e[i],s[i], z[i], p[i]))
print(' ')
print('(Dispersion parameter for %s family taken to be %2.2f)' % (self.family,self.dispersionfit))
print(' ')
if True: #%options.constant
printf(' Null deviance: %2.4f on %d degrees of freedom' % (self.deviance_null,self.df_null))
#end
print('Residual deviance: %2.4f on %d degrees of freedom' % (self.deviance,self.df))
self.anode()
#end % summary
def predict(self, Xnew=None,alpha=0.05, fulloutput=False):
'''LOGIT/PREDICT Predict from a fitted LOGIT object
CALL [y,ylo,yup] = predict(Xnew,options)
y = predicted value
ylo,yup = 100(1-alpha)% confidence interval for y
Xnew = new covariate
options = options struct defining the calculation
.alpha : confidence coefficient (default 0.05)
.size : size if binomial family (default 1).
'''
[mx, nx] = self.X.shape
if Xnew is None:
Xnew = self.X;
else:
Xnew = np.atleast_2d(Xnew)
notnans = np.flatnonzero(1-(1-np.isfinite(Xnew)).any(axis=1))
Xnew = Xnew[notnans,:]
[n,p] = Xnew.shape
if p != nx
raise ValueError('Number of covariates must match the number of regression coefficients')
nz = self.numk-1;
one = ones((n,1))
if (nx > 0):
eta = np.dot(Xnew * self.beta) + self.theta.T;
else:
eta = one * self.theta.T
#end
y = np.diff(np.hstack((zeros((n,1)), self.logitinv(eta), one),1,2);
if fulloutput:
pcov = self.params_cov;
if (nx > 0)
np = size(pcov,1);
[U S V]= np.linalg.svd(pcov,0);
R=(U*sqrt(S)*V.T); #%squareroot of pcov
ixb = nz+1:np;
% Var(eta_i) = var(theta_i+Xnew*b)
vareta = zeros(n,nz);
for ix1 = 1:nz
vareta(:,ix1) = max(sum(([one Xnew]*R([ix1,ixb],[ix1,ixb])).^2,2),eps);
end
else
vareta = diag(pcov);
end
crit = -invnorm(alpha/2);
ecrit = crit * sqrt(vareta);
mulo = logitinv(eta-ecrit);
muup = logitinv(eta+ecrit);
ylo1 = diff ([zeros(n,1), mulo , one],1,2);
yup1 = diff ([zeros(n,1), muup , one],1,2);
ylo = min(ylo1,yup1);
yup = max(ylo1,yup1);
for ix1 = 2:self.numk-1
yup(:,ix1) = max( [yup(:,ix1),muup(:,ix1)-mulo(:,ix1-1)],[],2);
end
return y,ylo,yup
end
def logistic_regression_derivatives (x, z, z1, g, g1, p)
% [dl, d2l] = logistic_regression_derivatives (@var{x}, @var{z}, @var{z1}, @var{g}, @var{g1}, @var{p})
% Called by logistic_regression. Calculates derivates of the
% log-likelihood for ordinal logistic regression model.
% Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2005, 2007
% Kurt Hornik
%
%
% Reglogit is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 3 of the License, or (at
% your option) any later version.
%
% Reglogit is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Reglogit; see the file COPYING. If not, see
% <http://www.gnu.org/licenses/>.
% Author: Gordon K. Smyth <gks@maths.uq.oz.au>
% Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at>
% Description: Derivates of log-likelihood in logistic regression
% first derivative
v = g .* (1 - g) ./ p;
v1 = g1 .* (1 - g1) ./ p;
dlogp = [(dmult (v, z) - dmult (v1, z1)), (dmult (v - v1, x))];
dl = sum (dlogp)';
% second derivative
w = v .* (1 - 2 * g); w1 = v1 .* (1 - 2 * g1);
d2l = [z, x]' * dmult (w, [z, x]) - [z1, x]' * dmult (w1, [z1, x]) ...
- dlogp' * dlogp;
return [dl, d2l]
end %function
def logistic_regression_likelihood (y, x, beta, z, z1)
% [g, g1, p, dev] = logistic_regression_likelihood (y ,x,beta,z,z1)
% Calculates likelihood for the ordinal logistic regression model.
% Called by logistic_regression.
% Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2005, 2007
% Kurt Hornik
%
%
% Reglogit is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 3 of the License, or (at
% your option) any later version.
%
% Reglogit is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Reglogit; see the file COPYING. If not, see
% <http://www.gnu.org/licenses/>.
% Author: Gordon K. Smyth <gks@maths.uq.oz.au>
% Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at>
% Description: Likelihood in logistic regression
e = exp ([z, x] * beta);
e1 = exp ([z1, x] * beta);
g = e ./ (1 + e);
g1 = e1 ./ (1 + e1);
g = max (y == max (y), g);
g1 = min (y > min(y), g1);
p = g - g1;
dev = -2 * sum (log (p));
return dev,p,g, g1
end %function
function M = dmult(A,B)
% PURPOSE: computes the product of diag(A) and B
% -----------------------------------------------------
% USAGE: m = dmult(a,b)
% where: a = a matrix
% b = a matrix
% -----------------------------------------------------
% RETURNS: m = diag(A) times B
% -----------------------------------------------------
% NOTE: a Gauss compatability function
% -----------------------------------------------------
% written by:
% Gordon K Smyth, U of Queensland, Australia, gks@maths.uq.oz.au
% Nov 19, 1990. Last revision Aug 29, 1995.
% documentation modifications made by:
% James P. LeSage, Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jpl@jpl.econ.utoledo.edu
[mb,nb] = size(B);
M=A(:,ones(1,nb)).*B;
end
def _test_dispersion_idx():
import wafo.data

@ -34,7 +34,6 @@ from numpy import flatnonzero as nonzero
from wafo.stats.estimation import FitDistribution
from scipy.stats.distributions import floatinfo
try:
from scipy.stats.distributions import vonmises_cython
@ -3727,7 +3726,7 @@ class frechet_r_gen(rv_continuous):
"""
def link(self, x, logSF, phat, ix):
u = phat[1]
#u = phat[1]
if ix == 0:
phati = log(-logSF) / log((x - phat[1]) / phat[2])
elif ix == 1:

Loading…
Cancel
Save