Added test_distributions.py

updated test_estimation.py
master
Per.Andreas.Brodtkorb 14 years ago
parent 85792549d1
commit 111d6ce808

@ -0,0 +1,567 @@
""" Test functions for stats module
"""
from numpy.testing import TestCase, run_module_suite, assert_equal, \
assert_array_equal, assert_almost_equal, assert_array_almost_equal, \
assert_, rand, dec
import numpy
import numpy as np
from numpy import typecodes, array
import wafo.stats as stats
from wafo.stats.distributions import argsreduce
def kolmogorov_check(diststr, args=(), N=20, significance=0.01):
qtest = stats.ksoneisf(significance, N)
cdf = eval('stats.'+diststr+'.cdf')
dist = eval('stats.'+diststr)
# Get random numbers
kwds = {'size':N}
vals = numpy.sort(dist.rvs(*args, **kwds))
cdfvals = cdf(vals, *args)
q = max(abs(cdfvals - np.arange(1.0, N+1)/N))
assert_(q < qtest, msg="Failed q=%f, bound=%f, alpha=%f" % (q, qtest, significance))
return
# generate test cases to test cdf and distribution consistency
dists = ['uniform','norm','lognorm','expon','beta',
'powerlaw','bradford','burr','fisk','cauchy','halfcauchy',
'foldcauchy','gamma','gengamma','loggamma',
'alpha','anglit','arcsine','betaprime','erlang',
'dgamma','exponweib','exponpow','frechet_l','frechet_r',
'gilbrat','f','ncf','chi2','chi','nakagami','genpareto',
'genextreme','genhalflogistic','pareto','lomax','halfnorm',
'halflogistic','fatiguelife','foldnorm','ncx2','t','nct',
'weibull_min','weibull_max','dweibull','maxwell','rayleigh',
'genlogistic', 'logistic','gumbel_l','gumbel_r','gompertz',
'hypsecant', 'laplace', 'reciprocal','triang','tukeylambda',
'vonmises']
# check function for test generator
def check_distribution(dist, args, alpha):
D,pval = stats.kstest(dist,'', args=args, N=1000)
if (pval < alpha):
D,pval = stats.kstest(dist,'',args=args, N=1000)
#if (pval < alpha):
# D,pval = stats.kstest(dist,'',args=args, N=1000)
assert_(pval > alpha, msg="D = " + str(D) + "; pval = " + str(pval) + \
"; alpha = " + str(alpha) + "\nargs = " + str(args))
# nose test generator
def test_all_distributions():
for dist in dists:
distfunc = getattr(stats, dist)
nargs = distfunc.numargs
alpha = 0.01
if dist == 'fatiguelife':
alpha = 0.001
if dist == 'erlang':
args = (4,)+tuple(rand(2))
elif dist == 'frechet':
args = tuple(2*rand(1))+(0,)+tuple(2*rand(2))
elif dist == 'triang':
args = tuple(rand(nargs))
elif dist == 'reciprocal':
vals = rand(nargs)
vals[1] = vals[0] + 1.0
args = tuple(vals)
elif dist == 'vonmises':
yield check_distribution, dist, (10,), alpha
yield check_distribution, dist, (101,), alpha
args = tuple(1.0+rand(nargs))
else:
args = tuple(1.0+rand(nargs))
yield check_distribution, dist, args, alpha
def check_vonmises_pdf_periodic(k,l,s,x):
vm = stats.vonmises(k,loc=l,scale=s)
assert_almost_equal(vm.pdf(x),vm.pdf(x%(2*numpy.pi*s)))
def check_vonmises_cdf_periodic(k,l,s,x):
vm = stats.vonmises(k,loc=l,scale=s)
assert_almost_equal(vm.cdf(x)%1,vm.cdf(x%(2*numpy.pi*s))%1)
def test_vonmises_pdf_periodic():
for k in [0.1, 1, 101]:
for x in [0,1,numpy.pi,10,100]:
yield check_vonmises_pdf_periodic, k, 0, 1, x
yield check_vonmises_pdf_periodic, k, 1, 1, x
yield check_vonmises_pdf_periodic, k, 0, 10, x
yield check_vonmises_cdf_periodic, k, 0, 1, x
yield check_vonmises_cdf_periodic, k, 1, 1, x
yield check_vonmises_cdf_periodic, k, 0, 10, x
class TestRandInt(TestCase):
def test_rvs(self):
vals = stats.randint.rvs(5,30,size=100)
assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
assert_(len(vals) == 100)
vals = stats.randint.rvs(5,30,size=(2,50))
assert_(numpy.shape(vals) == (2,50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.randint.rvs(15,46)
assert_((val >= 15) & (val < 46))
assert_(isinstance(val, numpy.ScalarType), msg=`type(val)`)
val = stats.randint(15,46).rvs(3)
assert_(val.dtype.char in typecodes['AllInteger'])
def test_pdf(self):
k = numpy.r_[0:36]
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
vals = stats.randint.pmf(k,5,30)
assert_array_almost_equal(vals,out)
def test_cdf(self):
x = numpy.r_[0:36:100j]
k = numpy.floor(x)
out = numpy.select([k>=30,k>=5],[1.0,(k-5.0+1)/(30-5.0)],0)
vals = stats.randint.cdf(x,5,30)
assert_array_almost_equal(vals, out, decimal=12)
class TestBinom(TestCase):
def test_rvs(self):
vals = stats.binom.rvs(10, 0.75, size=(2, 50))
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 10))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.binom.rvs(10, 0.75)
assert_(isinstance(val, int))
val = stats.binom(10, 0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestBernoulli(TestCase):
def test_rvs(self):
vals = stats.bernoulli.rvs(0.75, size=(2, 50))
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 1))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.bernoulli.rvs(0.75)
assert_(isinstance(val, int))
val = stats.bernoulli(0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestNBinom(TestCase):
def test_rvs(self):
vals = stats.nbinom.rvs(10, 0.75, size=(2, 50))
assert_(numpy.all(vals >= 0))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.nbinom.rvs(10, 0.75)
assert_(isinstance(val, int))
val = stats.nbinom(10, 0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestGeom(TestCase):
def test_rvs(self):
vals = stats.geom.rvs(0.75, size=(2, 50))
assert_(numpy.all(vals >= 0))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.geom.rvs(0.75)
assert_(isinstance(val, int))
val = stats.geom(0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_pmf(self):
vals = stats.geom.pmf([1,2,3],0.5)
assert_array_almost_equal(vals,[0.5,0.25,0.125])
def test_cdf_sf(self):
vals = stats.geom.cdf([1,2,3],0.5)
vals_sf = stats.geom.sf([1,2,3],0.5)
expected = array([0.5,0.75,0.875])
assert_array_almost_equal(vals,expected)
assert_array_almost_equal(vals_sf,1-expected)
class TestHypergeom(TestCase):
def test_rvs(self):
vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
assert_(numpy.all(vals >= 0) &
numpy.all(vals <= 3))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.hypergeom.rvs(20, 3, 10)
assert_(isinstance(val, int))
val = stats.hypergeom(20, 3, 10).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestLogser(TestCase):
def test_rvs(self):
vals = stats.logser.rvs(0.75, size=(2, 50))
assert_(numpy.all(vals >= 1))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.logser.rvs(0.75)
assert_(isinstance(val, int))
val = stats.logser(0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestPoisson(TestCase):
def test_rvs(self):
vals = stats.poisson.rvs(0.5, size=(2, 50))
assert_(numpy.all(vals >= 0))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.poisson.rvs(0.5)
assert_(isinstance(val, int))
val = stats.poisson(0.5).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestZipf(TestCase):
def test_rvs(self):
vals = stats.zipf.rvs(1.5, size=(2, 50))
assert_(numpy.all(vals >= 1))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.zipf.rvs(1.5)
assert_(isinstance(val, int))
val = stats.zipf(1.5).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestDLaplace(TestCase):
def test_rvs(self):
vals = stats.dlaplace.rvs(1.5 , size=(2, 50))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.dlaplace.rvs(1.5)
assert_(isinstance(val, int))
val = stats.dlaplace(1.5).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
class TestRvDiscrete(TestCase):
def test_rvs(self):
states = [-1,0,1,2,3,4]
probability = [0.0,0.3,0.4,0.0,0.3,0.0]
samples = 1000
r = stats.rv_discrete(name='sample',values=(states,probability))
x = r.rvs(size=samples)
assert_(isinstance(x, numpy.ndarray))
for s,p in zip(states,probability):
assert_(abs(sum(x == s)/float(samples) - p) < 0.05)
x = r.rvs()
assert_(isinstance(x, int))
class TestExpon(TestCase):
def test_zero(self):
assert_equal(stats.expon.pdf(0),1)
def test_tail(self): # Regression test for ticket 807
assert_equal(stats.expon.cdf(1e-18), 1e-18)
assert_equal(stats.expon.isf(stats.expon.sf(40)), 40)
class TestGenExpon(TestCase):
def test_pdf_unity_area(self):
from scipy.integrate import simps
# PDF should integrate to one
assert_almost_equal(simps(stats.genexpon.pdf(numpy.arange(0,10,0.01),
0.5, 0.5, 2.0),
dx=0.01), 1, 1)
def test_cdf_bounds(self):
# CDF should always be positive
cdf = stats.genexpon.cdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
assert_(numpy.all((0 <= cdf) & (cdf <= 1)))
class TestExponpow(TestCase):
def test_tail(self):
assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20)
assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8), 5)
class TestSkellam(TestCase):
def test_pmf(self):
#comparison to R
k = numpy.arange(-10, 15)
mu1, mu2 = 10, 5
skpmfR = numpy.array(
[4.2254582961926893e-005, 1.1404838449648488e-004,
2.8979625801752660e-004, 6.9177078182101231e-004,
1.5480716105844708e-003, 3.2412274963433889e-003,
6.3373707175123292e-003, 1.1552351566696643e-002,
1.9606152375042644e-002, 3.0947164083410337e-002,
4.5401737566767360e-002, 6.1894328166820688e-002,
7.8424609500170578e-002, 9.2418812533573133e-002,
1.0139793148019728e-001, 1.0371927988298846e-001,
9.9076583077406091e-002, 8.8546660073089561e-002,
7.4187842052486810e-002, 5.8392772862200251e-002,
4.3268692953013159e-002, 3.0248159818374226e-002,
1.9991434305603021e-002, 1.2516877303301180e-002,
7.4389876226229707e-003])
assert_almost_equal(stats.skellam.pmf(k, mu1, mu2), skpmfR, decimal=15)
def test_cdf(self):
#comparison to R, only 5 decimals
k = numpy.arange(-10, 15)
mu1, mu2 = 10, 5
skcdfR = numpy.array(
[6.4061475386192104e-005, 1.7810985988267694e-004,
4.6790611790020336e-004, 1.1596768997212152e-003,
2.7077485103056847e-003, 5.9489760066490718e-003,
1.2286346724161398e-002, 2.3838698290858034e-002,
4.3444850665900668e-002, 7.4392014749310995e-002,
1.1979375231607835e-001, 1.8168808048289900e-001,
2.6011268998306952e-001, 3.5253150251664261e-001,
4.5392943399683988e-001, 5.5764871387982828e-001,
6.5672529695723436e-001, 7.4527195703032389e-001,
8.1945979908281064e-001, 8.7785257194501087e-001,
9.2112126489802404e-001, 9.5136942471639818e-001,
9.7136085902200120e-001, 9.8387773632530240e-001,
9.9131672394792536e-001])
assert_almost_equal(stats.skellam.cdf(k, mu1, mu2), skcdfR, decimal=5)
class TestHypergeom(TestCase):
def test_precision(self):
# comparison number from mpmath
M = 2500
n = 50
N = 500
tot = M
good = n
hgpmf = stats.hypergeom.pmf(2, tot, good, N)
assert_almost_equal(hgpmf, 0.0010114963068932233, 11)
class TestChi2(TestCase):
# regression tests after precision improvements, ticket:1041, not verified
def test_precision(self):
assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003, 14)
assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778, 14)
class TestArrayArgument(TestCase): #test for ticket:992
def test_noexception(self):
rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5), size=(10,5))
assert_equal(rvs.shape, (10,5))
class TestDocstring(TestCase):
def test_docstrings(self):
"""See ticket #761"""
if stats.rayleigh.__doc__ is not None:
self.assertTrue("rayleigh" in stats.rayleigh.__doc__.lower())
if stats.bernoulli.__doc__ is not None:
self.assertTrue("bernoulli" in stats.bernoulli.__doc__.lower())
class TestEntropy(TestCase):
def test_entropy_positive(self):
"""See ticket #497"""
pk = [0.5,0.2,0.3]
qk = [0.1,0.25,0.65]
eself = stats.entropy(pk,pk)
edouble = stats.entropy(pk,qk)
assert_(0.0 == eself)
assert_(edouble >= 0.0)
def TestArgsreduce():
a = array([1,3,2,1,2,3,3])
b,c = argsreduce(a > 1, a, 2)
assert_array_equal(b, [3,2,2,3,3])
assert_array_equal(c, [2,2,2,2,2])
b,c = argsreduce(2 > 1, a, 2)
assert_array_equal(b, a[0])
assert_array_equal(c, [2])
b,c = argsreduce(a > 0, a, 2)
assert_array_equal(b, a)
assert_array_equal(c, [2] * numpy.size(a))
class TestFitMethod(TestCase):
skip = ['ncf']
@dec.slow
def test_fit(self):
for func, dist, args, alpha in test_all_distributions():
if dist in self.skip:
continue
distfunc = getattr(stats, dist)
res = distfunc.rvs(*args, **{'size':200})
vals = distfunc.fit(res)
vals2 = distfunc.fit(res, optimizer='powell')
# Only check the length of the return
# FIXME: should check the actual results to see if we are 'close'
# to what was created --- but what is 'close' enough
if dist in ['erlang', 'frechet']:
assert_(len(vals)==len(args))
assert_(len(vals2)==len(args))
else:
assert_(len(vals) == 2+len(args))
assert_(len(vals2)==2+len(args))
@dec.slow
def test_fix_fit(self):
for func, dist, args, alpha in test_all_distributions():
# Not sure why 'ncf', and 'beta' are failing
# erlang and frechet have different len(args) than distfunc.numargs
if dist in self.skip + ['erlang', 'frechet', 'beta']:
continue
distfunc = getattr(stats, dist)
res = distfunc.rvs(*args, **{'size':200})
vals = distfunc.fit(res,floc=0)
vals2 = distfunc.fit(res,fscale=1)
assert_(len(vals) == 2+len(args))
assert_(vals[-2] == 0)
assert_(vals2[-1] == 1)
assert_(len(vals2) == 2+len(args))
if len(args) > 0:
vals3 = distfunc.fit(res, f0=args[0])
assert_(len(vals3) == 2+len(args))
assert_(vals3[0] == args[0])
if len(args) > 1:
vals4 = distfunc.fit(res, f1=args[1])
assert_(len(vals4) == 2+len(args))
assert_(vals4[1] == args[1])
if len(args) > 2:
vals5 = distfunc.fit(res, f2=args[2])
assert_(len(vals5) == 2+len(args))
assert_(vals5[2] == args[2])
class TestFrozen(TestCase):
"""Test that a frozen distribution gives the same results as the original object.
Only tested for the normal distribution (with loc and scale specified) and for the
gamma distribution (with a shape parameter specified).
"""
def test_norm(self):
dist = stats.norm
frozen = stats.norm(loc=10.0, scale=3.0)
result_f = frozen.pdf(20.0)
result = dist.pdf(20.0, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.cdf(20.0)
result = dist.cdf(20.0, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.ppf(0.25)
result = dist.ppf(0.25, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.isf(0.25)
result = dist.isf(0.25, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.sf(10.0)
result = dist.sf(10.0, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.median()
result = dist.median(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.mean()
result = dist.mean(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.var()
result = dist.var(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.std()
result = dist.std(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.entropy()
result = dist.entropy(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.moment(2)
result = dist.moment(2)
assert_equal(result_f, result)
def test_gamma(self):
a = 2.0
dist = stats.gamma
frozen = stats.gamma(a)
result_f = frozen.pdf(20.0)
result = dist.pdf(20.0, a)
assert_equal(result_f, result)
result_f = frozen.cdf(20.0)
result = dist.cdf(20.0, a)
assert_equal(result_f, result)
result_f = frozen.ppf(0.25)
result = dist.ppf(0.25, a)
assert_equal(result_f, result)
result_f = frozen.isf(0.25)
result = dist.isf(0.25, a)
assert_equal(result_f, result)
result_f = frozen.sf(10.0)
result = dist.sf(10.0, a)
assert_equal(result_f, result)
result_f = frozen.median()
result = dist.median(a)
assert_equal(result_f, result)
result_f = frozen.mean()
result = dist.mean(a)
assert_equal(result_f, result)
result_f = frozen.var()
result = dist.var(a)
assert_equal(result_f, result)
result_f = frozen.std()
result = dist.std(a)
assert_equal(result_f, result)
result_f = frozen.entropy()
result = dist.entropy(a)
assert_equal(result_f, result)
result_f = frozen.moment(2)
result = dist.moment(2, a)
assert_equal(result_f, result)
def test_regression_02(self):
"""Regression test for ticket #1293."""
# Create a frozen distribution.
frozen = stats.lognorm(1)
# Call one of its methods that does not take any keyword arguments.
m1 = frozen.moment(2)
# Now call a method that takes a keyword argument.
s = frozen.stats(moments='mvsk')
# Call moment(2) again.
# After calling stats(), the following was raising an exception.
# So this test passes if the following does not raise an exception.
m2 = frozen.moment(2)
# The following should also be true, of course. But it is not
# the focus of this test.
assert_equal(m1, m2)
def test_regression_ticket_1316():
"""Regression test for ticket #1316."""
# The following was raising an exception, because _construct_default_doc()
# did not handle the default keyword extradoc=None. See ticket #1316.
g = stats.distributions.gamma_gen(name='gamma')
if __name__ == "__main__":
run_module_suite()

@ -1,65 +1,48 @@
'''
# -*- coding:utf-8 -*-
"""
Created on 19. nov. 2010
@author: pab
'''
"""
from numpy import array, log
import wafo.stats as ws
from wafo.stats.estimation import Profile, FitDistribution
from numpy import log, array
def test_fit_and_profile():
from wafo.stats.estimation import FitDistribution, Profile
def test_profile():
'''
# MLE
import wafo.stats as ws
R = ws.weibull_min.rvs(1,size=100)
>>> R = array([ 1.11214852, 0.55730247, 0.88241032, 0.13421021, 0.21939628,
... 0.93901239, 4.55065051, 0.06728561, 1.65808964, 3.31725493,
... 1.26022136, 0.48707756, 1.04600817, 3.45064509, 0.23478845,
... 0.73197928, 0.78702608, 1.10566899, 0.08770387, 0.29773143,
... 0.442589 , 0.06017045, 0.99086215, 0.36520787, 0.55931192,
... 0.02220038, 0.09683231, 0.2407798 , 1.5550326 , 1.21834857,
... 0.51317074, 3.12672982, 2.01984527, 1.42837289, 1.60665276,
... 0.07643233, 0.97254151, 0.71870616, 0.15669964, 0.7647863 ,
... 2.15586998, 1.03167507, 0.66384501, 0.26824186, 0.25953582,
... 0.52773641, 0.3371869 , 1.17897776, 0.36094868, 0.49593992,
... 0.12124638, 0.13178139, 0.28325022, 1.2189952 , 2.85895075,
... 1.94868469, 1.5216953 , 0.77066953, 0.42610845, 1.52848366,
... 0.26570905, 0.52072509, 1.03106309, 0.34430637, 1.36386879,
... 1.05857501, 0.66754409, 3.18836655, 0.40063524, 0.40696207,
... 1.24167978, 0.27927484, 3.95644924, 1.34793436, 0.66225993,
... 0.46567866, 0.09325875, 1.90895739, 1.23831713, 0.29819745,
... 1.10528719, 0.01973962, 0.56370415, 0.66831751, 1.33781636,
... 0.53985288, 0.85251279, 1.75369891, 0.08066507, 0.29273944,
... 0.38886539, 0.20961546, 0.93814728, 0.08732068, 1.6336713 ,
... 1.38893923, 2.05882459, 0.51709862, 0.37553027, 0.06829269])
R = ws.weibull_min.rvs(1,size=20)
>>> R = array([ 0.08018795, 1.09015299, 2.08591271, 0.51542081, 0.75692042,
... 0.57837017, 0.45419753, 1.1559131 , 0.26582267, 0.51517273,
... 0.75008492, 0.59404957, 1.33748264, 0.14472142, 0.77459603,
... 1.77312556, 1.06347991, 0.42007769, 0.71094628, 0.02366977])
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
>>> phat.par
array([ 1.07424857, 0. , 0.96282996])
array([ 1.37836487, 0. , 0.82085633])
# Better CI for phat.par[i=0]
>>> Lp = Profile(phat, i=0)
>>> Lp.get_bounds(alpha=0.1)
array([ 0.94231243, 1.21444458])
array([ 1.00225064, 1.8159036 ])
>>> SF = 1./990
>>> x = phat.isf(SF)
>>> x
5.8114656626008818
3.3323076459875312
# CI for x
>>> Lx = phat.profile(i=0, x=x, link=phat.dist.link)
>>> Lx.get_bounds(alpha=0.2)
array([ 4.91172017, 7.08081584])
array([ 2.52211661, 4.98664787])
# CI for logSF=log(SF)
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
>>> logSF = log(SF)
>>> Lsf = phat.profile(i=0, logSF=logSF, link=phat.dist.link, pmin=logSF-10,pmax=logSF+5)
>>> Lsf.get_bounds(alpha=0.2)
array([-8.37580767, -5.66897775])
array([-10.87488318, -4.36225468])
'''
pass
if __name__ == "__main__":
if __name__ == '__main__':
import doctest
doctest.testmod()
Loading…
Cancel
Save