parent
85792549d1
commit
111d6ce808
@ -0,0 +1,567 @@
|
||||
""" Test functions for stats module
|
||||
|
||||
"""
|
||||
|
||||
from numpy.testing import TestCase, run_module_suite, assert_equal, \
|
||||
assert_array_equal, assert_almost_equal, assert_array_almost_equal, \
|
||||
assert_, rand, dec
|
||||
|
||||
|
||||
import numpy
|
||||
import numpy as np
|
||||
from numpy import typecodes, array
|
||||
import wafo.stats as stats
|
||||
from wafo.stats.distributions import argsreduce
|
||||
|
||||
def kolmogorov_check(diststr, args=(), N=20, significance=0.01):
|
||||
qtest = stats.ksoneisf(significance, N)
|
||||
cdf = eval('stats.'+diststr+'.cdf')
|
||||
dist = eval('stats.'+diststr)
|
||||
# Get random numbers
|
||||
kwds = {'size':N}
|
||||
vals = numpy.sort(dist.rvs(*args, **kwds))
|
||||
cdfvals = cdf(vals, *args)
|
||||
q = max(abs(cdfvals - np.arange(1.0, N+1)/N))
|
||||
assert_(q < qtest, msg="Failed q=%f, bound=%f, alpha=%f" % (q, qtest, significance))
|
||||
return
|
||||
|
||||
|
||||
# generate test cases to test cdf and distribution consistency
|
||||
dists = ['uniform','norm','lognorm','expon','beta',
|
||||
'powerlaw','bradford','burr','fisk','cauchy','halfcauchy',
|
||||
'foldcauchy','gamma','gengamma','loggamma',
|
||||
'alpha','anglit','arcsine','betaprime','erlang',
|
||||
'dgamma','exponweib','exponpow','frechet_l','frechet_r',
|
||||
'gilbrat','f','ncf','chi2','chi','nakagami','genpareto',
|
||||
'genextreme','genhalflogistic','pareto','lomax','halfnorm',
|
||||
'halflogistic','fatiguelife','foldnorm','ncx2','t','nct',
|
||||
'weibull_min','weibull_max','dweibull','maxwell','rayleigh',
|
||||
'genlogistic', 'logistic','gumbel_l','gumbel_r','gompertz',
|
||||
'hypsecant', 'laplace', 'reciprocal','triang','tukeylambda',
|
||||
'vonmises']
|
||||
|
||||
# check function for test generator
|
||||
def check_distribution(dist, args, alpha):
|
||||
D,pval = stats.kstest(dist,'', args=args, N=1000)
|
||||
if (pval < alpha):
|
||||
D,pval = stats.kstest(dist,'',args=args, N=1000)
|
||||
#if (pval < alpha):
|
||||
# D,pval = stats.kstest(dist,'',args=args, N=1000)
|
||||
assert_(pval > alpha, msg="D = " + str(D) + "; pval = " + str(pval) + \
|
||||
"; alpha = " + str(alpha) + "\nargs = " + str(args))
|
||||
|
||||
# nose test generator
|
||||
def test_all_distributions():
|
||||
for dist in dists:
|
||||
distfunc = getattr(stats, dist)
|
||||
nargs = distfunc.numargs
|
||||
alpha = 0.01
|
||||
if dist == 'fatiguelife':
|
||||
alpha = 0.001
|
||||
if dist == 'erlang':
|
||||
args = (4,)+tuple(rand(2))
|
||||
elif dist == 'frechet':
|
||||
args = tuple(2*rand(1))+(0,)+tuple(2*rand(2))
|
||||
elif dist == 'triang':
|
||||
args = tuple(rand(nargs))
|
||||
elif dist == 'reciprocal':
|
||||
vals = rand(nargs)
|
||||
vals[1] = vals[0] + 1.0
|
||||
args = tuple(vals)
|
||||
elif dist == 'vonmises':
|
||||
yield check_distribution, dist, (10,), alpha
|
||||
yield check_distribution, dist, (101,), alpha
|
||||
args = tuple(1.0+rand(nargs))
|
||||
else:
|
||||
args = tuple(1.0+rand(nargs))
|
||||
yield check_distribution, dist, args, alpha
|
||||
|
||||
def check_vonmises_pdf_periodic(k,l,s,x):
|
||||
vm = stats.vonmises(k,loc=l,scale=s)
|
||||
assert_almost_equal(vm.pdf(x),vm.pdf(x%(2*numpy.pi*s)))
|
||||
def check_vonmises_cdf_periodic(k,l,s,x):
|
||||
vm = stats.vonmises(k,loc=l,scale=s)
|
||||
assert_almost_equal(vm.cdf(x)%1,vm.cdf(x%(2*numpy.pi*s))%1)
|
||||
|
||||
def test_vonmises_pdf_periodic():
|
||||
for k in [0.1, 1, 101]:
|
||||
for x in [0,1,numpy.pi,10,100]:
|
||||
yield check_vonmises_pdf_periodic, k, 0, 1, x
|
||||
yield check_vonmises_pdf_periodic, k, 1, 1, x
|
||||
yield check_vonmises_pdf_periodic, k, 0, 10, x
|
||||
|
||||
yield check_vonmises_cdf_periodic, k, 0, 1, x
|
||||
yield check_vonmises_cdf_periodic, k, 1, 1, x
|
||||
yield check_vonmises_cdf_periodic, k, 0, 10, x
|
||||
|
||||
class TestRandInt(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.randint.rvs(5,30,size=100)
|
||||
assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
|
||||
assert_(len(vals) == 100)
|
||||
vals = stats.randint.rvs(5,30,size=(2,50))
|
||||
assert_(numpy.shape(vals) == (2,50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.randint.rvs(15,46)
|
||||
assert_((val >= 15) & (val < 46))
|
||||
assert_(isinstance(val, numpy.ScalarType), msg=`type(val)`)
|
||||
val = stats.randint(15,46).rvs(3)
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
def test_pdf(self):
|
||||
k = numpy.r_[0:36]
|
||||
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
|
||||
vals = stats.randint.pmf(k,5,30)
|
||||
assert_array_almost_equal(vals,out)
|
||||
|
||||
def test_cdf(self):
|
||||
x = numpy.r_[0:36:100j]
|
||||
k = numpy.floor(x)
|
||||
out = numpy.select([k>=30,k>=5],[1.0,(k-5.0+1)/(30-5.0)],0)
|
||||
vals = stats.randint.cdf(x,5,30)
|
||||
assert_array_almost_equal(vals, out, decimal=12)
|
||||
|
||||
class TestBinom(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.binom.rvs(10, 0.75, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 10))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.binom.rvs(10, 0.75)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.binom(10, 0.75).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
|
||||
class TestBernoulli(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.bernoulli.rvs(0.75, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 1))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.bernoulli.rvs(0.75)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.bernoulli(0.75).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
class TestNBinom(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.nbinom.rvs(10, 0.75, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 0))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.nbinom.rvs(10, 0.75)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.nbinom(10, 0.75).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
class TestGeom(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.geom.rvs(0.75, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 0))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.geom.rvs(0.75)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.geom(0.75).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
def test_pmf(self):
|
||||
vals = stats.geom.pmf([1,2,3],0.5)
|
||||
assert_array_almost_equal(vals,[0.5,0.25,0.125])
|
||||
|
||||
def test_cdf_sf(self):
|
||||
vals = stats.geom.cdf([1,2,3],0.5)
|
||||
vals_sf = stats.geom.sf([1,2,3],0.5)
|
||||
expected = array([0.5,0.75,0.875])
|
||||
assert_array_almost_equal(vals,expected)
|
||||
assert_array_almost_equal(vals_sf,1-expected)
|
||||
|
||||
|
||||
class TestHypergeom(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 0) &
|
||||
numpy.all(vals <= 3))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.hypergeom.rvs(20, 3, 10)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.hypergeom(20, 3, 10).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
class TestLogser(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.logser.rvs(0.75, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 1))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.logser.rvs(0.75)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.logser(0.75).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
class TestPoisson(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.poisson.rvs(0.5, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 0))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.poisson.rvs(0.5)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.poisson(0.5).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
class TestZipf(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.zipf.rvs(1.5, size=(2, 50))
|
||||
assert_(numpy.all(vals >= 1))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.zipf.rvs(1.5)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.zipf(1.5).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
class TestDLaplace(TestCase):
|
||||
def test_rvs(self):
|
||||
vals = stats.dlaplace.rvs(1.5 , size=(2, 50))
|
||||
assert_(numpy.shape(vals) == (2, 50))
|
||||
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||||
val = stats.dlaplace.rvs(1.5)
|
||||
assert_(isinstance(val, int))
|
||||
val = stats.dlaplace(1.5).rvs(3)
|
||||
assert_(isinstance(val, numpy.ndarray))
|
||||
assert_(val.dtype.char in typecodes['AllInteger'])
|
||||
|
||||
class TestRvDiscrete(TestCase):
|
||||
def test_rvs(self):
|
||||
states = [-1,0,1,2,3,4]
|
||||
probability = [0.0,0.3,0.4,0.0,0.3,0.0]
|
||||
samples = 1000
|
||||
r = stats.rv_discrete(name='sample',values=(states,probability))
|
||||
x = r.rvs(size=samples)
|
||||
assert_(isinstance(x, numpy.ndarray))
|
||||
|
||||
for s,p in zip(states,probability):
|
||||
assert_(abs(sum(x == s)/float(samples) - p) < 0.05)
|
||||
|
||||
x = r.rvs()
|
||||
assert_(isinstance(x, int))
|
||||
|
||||
class TestExpon(TestCase):
|
||||
def test_zero(self):
|
||||
assert_equal(stats.expon.pdf(0),1)
|
||||
|
||||
def test_tail(self): # Regression test for ticket 807
|
||||
assert_equal(stats.expon.cdf(1e-18), 1e-18)
|
||||
assert_equal(stats.expon.isf(stats.expon.sf(40)), 40)
|
||||
|
||||
class TestGenExpon(TestCase):
|
||||
def test_pdf_unity_area(self):
|
||||
from scipy.integrate import simps
|
||||
# PDF should integrate to one
|
||||
assert_almost_equal(simps(stats.genexpon.pdf(numpy.arange(0,10,0.01),
|
||||
0.5, 0.5, 2.0),
|
||||
dx=0.01), 1, 1)
|
||||
|
||||
def test_cdf_bounds(self):
|
||||
# CDF should always be positive
|
||||
cdf = stats.genexpon.cdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
|
||||
assert_(numpy.all((0 <= cdf) & (cdf <= 1)))
|
||||
|
||||
class TestExponpow(TestCase):
|
||||
def test_tail(self):
|
||||
assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20)
|
||||
assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8), 5)
|
||||
|
||||
|
||||
class TestSkellam(TestCase):
|
||||
def test_pmf(self):
|
||||
#comparison to R
|
||||
k = numpy.arange(-10, 15)
|
||||
mu1, mu2 = 10, 5
|
||||
skpmfR = numpy.array(
|
||||
[4.2254582961926893e-005, 1.1404838449648488e-004,
|
||||
2.8979625801752660e-004, 6.9177078182101231e-004,
|
||||
1.5480716105844708e-003, 3.2412274963433889e-003,
|
||||
6.3373707175123292e-003, 1.1552351566696643e-002,
|
||||
1.9606152375042644e-002, 3.0947164083410337e-002,
|
||||
4.5401737566767360e-002, 6.1894328166820688e-002,
|
||||
7.8424609500170578e-002, 9.2418812533573133e-002,
|
||||
1.0139793148019728e-001, 1.0371927988298846e-001,
|
||||
9.9076583077406091e-002, 8.8546660073089561e-002,
|
||||
7.4187842052486810e-002, 5.8392772862200251e-002,
|
||||
4.3268692953013159e-002, 3.0248159818374226e-002,
|
||||
1.9991434305603021e-002, 1.2516877303301180e-002,
|
||||
7.4389876226229707e-003])
|
||||
|
||||
assert_almost_equal(stats.skellam.pmf(k, mu1, mu2), skpmfR, decimal=15)
|
||||
|
||||
def test_cdf(self):
|
||||
#comparison to R, only 5 decimals
|
||||
k = numpy.arange(-10, 15)
|
||||
mu1, mu2 = 10, 5
|
||||
skcdfR = numpy.array(
|
||||
[6.4061475386192104e-005, 1.7810985988267694e-004,
|
||||
4.6790611790020336e-004, 1.1596768997212152e-003,
|
||||
2.7077485103056847e-003, 5.9489760066490718e-003,
|
||||
1.2286346724161398e-002, 2.3838698290858034e-002,
|
||||
4.3444850665900668e-002, 7.4392014749310995e-002,
|
||||
1.1979375231607835e-001, 1.8168808048289900e-001,
|
||||
2.6011268998306952e-001, 3.5253150251664261e-001,
|
||||
4.5392943399683988e-001, 5.5764871387982828e-001,
|
||||
6.5672529695723436e-001, 7.4527195703032389e-001,
|
||||
8.1945979908281064e-001, 8.7785257194501087e-001,
|
||||
9.2112126489802404e-001, 9.5136942471639818e-001,
|
||||
9.7136085902200120e-001, 9.8387773632530240e-001,
|
||||
9.9131672394792536e-001])
|
||||
|
||||
assert_almost_equal(stats.skellam.cdf(k, mu1, mu2), skcdfR, decimal=5)
|
||||
|
||||
|
||||
class TestHypergeom(TestCase):
|
||||
def test_precision(self):
|
||||
# comparison number from mpmath
|
||||
M = 2500
|
||||
n = 50
|
||||
N = 500
|
||||
tot = M
|
||||
good = n
|
||||
hgpmf = stats.hypergeom.pmf(2, tot, good, N)
|
||||
|
||||
assert_almost_equal(hgpmf, 0.0010114963068932233, 11)
|
||||
|
||||
|
||||
class TestChi2(TestCase):
|
||||
# regression tests after precision improvements, ticket:1041, not verified
|
||||
def test_precision(self):
|
||||
assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003, 14)
|
||||
assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778, 14)
|
||||
|
||||
class TestArrayArgument(TestCase): #test for ticket:992
|
||||
def test_noexception(self):
|
||||
rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5), size=(10,5))
|
||||
assert_equal(rvs.shape, (10,5))
|
||||
|
||||
class TestDocstring(TestCase):
|
||||
def test_docstrings(self):
|
||||
"""See ticket #761"""
|
||||
if stats.rayleigh.__doc__ is not None:
|
||||
self.assertTrue("rayleigh" in stats.rayleigh.__doc__.lower())
|
||||
if stats.bernoulli.__doc__ is not None:
|
||||
self.assertTrue("bernoulli" in stats.bernoulli.__doc__.lower())
|
||||
|
||||
class TestEntropy(TestCase):
|
||||
def test_entropy_positive(self):
|
||||
"""See ticket #497"""
|
||||
pk = [0.5,0.2,0.3]
|
||||
qk = [0.1,0.25,0.65]
|
||||
eself = stats.entropy(pk,pk)
|
||||
edouble = stats.entropy(pk,qk)
|
||||
assert_(0.0 == eself)
|
||||
assert_(edouble >= 0.0)
|
||||
|
||||
def TestArgsreduce():
|
||||
a = array([1,3,2,1,2,3,3])
|
||||
b,c = argsreduce(a > 1, a, 2)
|
||||
|
||||
assert_array_equal(b, [3,2,2,3,3])
|
||||
assert_array_equal(c, [2,2,2,2,2])
|
||||
|
||||
b,c = argsreduce(2 > 1, a, 2)
|
||||
assert_array_equal(b, a[0])
|
||||
assert_array_equal(c, [2])
|
||||
|
||||
b,c = argsreduce(a > 0, a, 2)
|
||||
assert_array_equal(b, a)
|
||||
assert_array_equal(c, [2] * numpy.size(a))
|
||||
|
||||
|
||||
class TestFitMethod(TestCase):
|
||||
skip = ['ncf']
|
||||
|
||||
@dec.slow
|
||||
def test_fit(self):
|
||||
for func, dist, args, alpha in test_all_distributions():
|
||||
if dist in self.skip:
|
||||
continue
|
||||
distfunc = getattr(stats, dist)
|
||||
res = distfunc.rvs(*args, **{'size':200})
|
||||
vals = distfunc.fit(res)
|
||||
vals2 = distfunc.fit(res, optimizer='powell')
|
||||
# Only check the length of the return
|
||||
# FIXME: should check the actual results to see if we are 'close'
|
||||
# to what was created --- but what is 'close' enough
|
||||
if dist in ['erlang', 'frechet']:
|
||||
assert_(len(vals)==len(args))
|
||||
assert_(len(vals2)==len(args))
|
||||
else:
|
||||
assert_(len(vals) == 2+len(args))
|
||||
assert_(len(vals2)==2+len(args))
|
||||
|
||||
@dec.slow
|
||||
def test_fix_fit(self):
|
||||
for func, dist, args, alpha in test_all_distributions():
|
||||
# Not sure why 'ncf', and 'beta' are failing
|
||||
# erlang and frechet have different len(args) than distfunc.numargs
|
||||
if dist in self.skip + ['erlang', 'frechet', 'beta']:
|
||||
continue
|
||||
distfunc = getattr(stats, dist)
|
||||
res = distfunc.rvs(*args, **{'size':200})
|
||||
vals = distfunc.fit(res,floc=0)
|
||||
vals2 = distfunc.fit(res,fscale=1)
|
||||
assert_(len(vals) == 2+len(args))
|
||||
assert_(vals[-2] == 0)
|
||||
assert_(vals2[-1] == 1)
|
||||
assert_(len(vals2) == 2+len(args))
|
||||
if len(args) > 0:
|
||||
vals3 = distfunc.fit(res, f0=args[0])
|
||||
assert_(len(vals3) == 2+len(args))
|
||||
assert_(vals3[0] == args[0])
|
||||
if len(args) > 1:
|
||||
vals4 = distfunc.fit(res, f1=args[1])
|
||||
assert_(len(vals4) == 2+len(args))
|
||||
assert_(vals4[1] == args[1])
|
||||
if len(args) > 2:
|
||||
vals5 = distfunc.fit(res, f2=args[2])
|
||||
assert_(len(vals5) == 2+len(args))
|
||||
assert_(vals5[2] == args[2])
|
||||
|
||||
class TestFrozen(TestCase):
|
||||
"""Test that a frozen distribution gives the same results as the original object.
|
||||
|
||||
Only tested for the normal distribution (with loc and scale specified) and for the
|
||||
gamma distribution (with a shape parameter specified).
|
||||
"""
|
||||
def test_norm(self):
|
||||
dist = stats.norm
|
||||
frozen = stats.norm(loc=10.0, scale=3.0)
|
||||
|
||||
result_f = frozen.pdf(20.0)
|
||||
result = dist.pdf(20.0, loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.cdf(20.0)
|
||||
result = dist.cdf(20.0, loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.ppf(0.25)
|
||||
result = dist.ppf(0.25, loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.isf(0.25)
|
||||
result = dist.isf(0.25, loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.sf(10.0)
|
||||
result = dist.sf(10.0, loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.median()
|
||||
result = dist.median(loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.mean()
|
||||
result = dist.mean(loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.var()
|
||||
result = dist.var(loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.std()
|
||||
result = dist.std(loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.entropy()
|
||||
result = dist.entropy(loc=10.0, scale=3.0)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.moment(2)
|
||||
result = dist.moment(2)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
def test_gamma(self):
|
||||
a = 2.0
|
||||
dist = stats.gamma
|
||||
frozen = stats.gamma(a)
|
||||
|
||||
result_f = frozen.pdf(20.0)
|
||||
result = dist.pdf(20.0, a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.cdf(20.0)
|
||||
result = dist.cdf(20.0, a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.ppf(0.25)
|
||||
result = dist.ppf(0.25, a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.isf(0.25)
|
||||
result = dist.isf(0.25, a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.sf(10.0)
|
||||
result = dist.sf(10.0, a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.median()
|
||||
result = dist.median(a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.mean()
|
||||
result = dist.mean(a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.var()
|
||||
result = dist.var(a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.std()
|
||||
result = dist.std(a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.entropy()
|
||||
result = dist.entropy(a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
result_f = frozen.moment(2)
|
||||
result = dist.moment(2, a)
|
||||
assert_equal(result_f, result)
|
||||
|
||||
def test_regression_02(self):
|
||||
"""Regression test for ticket #1293."""
|
||||
# Create a frozen distribution.
|
||||
frozen = stats.lognorm(1)
|
||||
# Call one of its methods that does not take any keyword arguments.
|
||||
m1 = frozen.moment(2)
|
||||
# Now call a method that takes a keyword argument.
|
||||
s = frozen.stats(moments='mvsk')
|
||||
# Call moment(2) again.
|
||||
# After calling stats(), the following was raising an exception.
|
||||
# So this test passes if the following does not raise an exception.
|
||||
m2 = frozen.moment(2)
|
||||
# The following should also be true, of course. But it is not
|
||||
# the focus of this test.
|
||||
assert_equal(m1, m2)
|
||||
|
||||
|
||||
def test_regression_ticket_1316():
|
||||
"""Regression test for ticket #1316."""
|
||||
# The following was raising an exception, because _construct_default_doc()
|
||||
# did not handle the default keyword extradoc=None. See ticket #1316.
|
||||
g = stats.distributions.gamma_gen(name='gamma')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@ -1,65 +1,48 @@
|
||||
'''
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
Created on 19. nov. 2010
|
||||
|
||||
@author: pab
|
||||
'''
|
||||
|
||||
"""
|
||||
from numpy import array, log
|
||||
import wafo.stats as ws
|
||||
from wafo.stats.estimation import Profile, FitDistribution
|
||||
from numpy import log, array
|
||||
def test_fit_and_profile():
|
||||
from wafo.stats.estimation import FitDistribution, Profile
|
||||
def test_profile():
|
||||
'''
|
||||
# MLE
|
||||
import wafo.stats as ws
|
||||
R = ws.weibull_min.rvs(1,size=100)
|
||||
>>> R = array([ 1.11214852, 0.55730247, 0.88241032, 0.13421021, 0.21939628,
|
||||
... 0.93901239, 4.55065051, 0.06728561, 1.65808964, 3.31725493,
|
||||
... 1.26022136, 0.48707756, 1.04600817, 3.45064509, 0.23478845,
|
||||
... 0.73197928, 0.78702608, 1.10566899, 0.08770387, 0.29773143,
|
||||
... 0.442589 , 0.06017045, 0.99086215, 0.36520787, 0.55931192,
|
||||
... 0.02220038, 0.09683231, 0.2407798 , 1.5550326 , 1.21834857,
|
||||
... 0.51317074, 3.12672982, 2.01984527, 1.42837289, 1.60665276,
|
||||
... 0.07643233, 0.97254151, 0.71870616, 0.15669964, 0.7647863 ,
|
||||
... 2.15586998, 1.03167507, 0.66384501, 0.26824186, 0.25953582,
|
||||
... 0.52773641, 0.3371869 , 1.17897776, 0.36094868, 0.49593992,
|
||||
... 0.12124638, 0.13178139, 0.28325022, 1.2189952 , 2.85895075,
|
||||
... 1.94868469, 1.5216953 , 0.77066953, 0.42610845, 1.52848366,
|
||||
... 0.26570905, 0.52072509, 1.03106309, 0.34430637, 1.36386879,
|
||||
... 1.05857501, 0.66754409, 3.18836655, 0.40063524, 0.40696207,
|
||||
... 1.24167978, 0.27927484, 3.95644924, 1.34793436, 0.66225993,
|
||||
... 0.46567866, 0.09325875, 1.90895739, 1.23831713, 0.29819745,
|
||||
... 1.10528719, 0.01973962, 0.56370415, 0.66831751, 1.33781636,
|
||||
... 0.53985288, 0.85251279, 1.75369891, 0.08066507, 0.29273944,
|
||||
... 0.38886539, 0.20961546, 0.93814728, 0.08732068, 1.6336713 ,
|
||||
... 1.38893923, 2.05882459, 0.51709862, 0.37553027, 0.06829269])
|
||||
R = ws.weibull_min.rvs(1,size=20)
|
||||
>>> R = array([ 0.08018795, 1.09015299, 2.08591271, 0.51542081, 0.75692042,
|
||||
... 0.57837017, 0.45419753, 1.1559131 , 0.26582267, 0.51517273,
|
||||
... 0.75008492, 0.59404957, 1.33748264, 0.14472142, 0.77459603,
|
||||
... 1.77312556, 1.06347991, 0.42007769, 0.71094628, 0.02366977])
|
||||
|
||||
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
|
||||
>>> phat.par
|
||||
array([ 1.07424857, 0. , 0.96282996])
|
||||
array([ 1.37836487, 0. , 0.82085633])
|
||||
|
||||
# Better CI for phat.par[i=0]
|
||||
>>> Lp = Profile(phat, i=0)
|
||||
>>> Lp.get_bounds(alpha=0.1)
|
||||
array([ 0.94231243, 1.21444458])
|
||||
array([ 1.00225064, 1.8159036 ])
|
||||
|
||||
>>> SF = 1./990
|
||||
>>> x = phat.isf(SF)
|
||||
>>> x
|
||||
5.8114656626008818
|
||||
3.3323076459875312
|
||||
|
||||
# CI for x
|
||||
>>> Lx = phat.profile(i=0, x=x, link=phat.dist.link)
|
||||
>>> Lx.get_bounds(alpha=0.2)
|
||||
array([ 4.91172017, 7.08081584])
|
||||
array([ 2.52211661, 4.98664787])
|
||||
|
||||
# CI for logSF=log(SF)
|
||||
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
|
||||
>>> logSF = log(SF)
|
||||
>>> Lsf = phat.profile(i=0, logSF=logSF, link=phat.dist.link, pmin=logSF-10,pmax=logSF+5)
|
||||
>>> Lsf.get_bounds(alpha=0.2)
|
||||
array([-8.37580767, -5.66897775])
|
||||
array([-10.87488318, -4.36225468])
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue