Small update

master
pbrod 9 years ago
parent 02a899c0ad
commit 0d7ef88fae

@ -17,7 +17,8 @@ from wafo.transform.core import TrData
from wafo.transform.estimation import TransformEstimator from wafo.transform.estimation import TransformEstimator
from wafo.stats import distributions from wafo.stats import distributions
from wafo.misc import (nextpow2, findtp, findrfc, findtc, findcross, from wafo.misc import (nextpow2, findtp, findrfc, findtc, findcross,
ecross, JITImport, DotDict, gravity, findrfc_astm) ecross, JITImport, DotDict, gravity, findrfc_astm,
detrendma)
from wafo.interpolate import stineman_interp from wafo.interpolate import stineman_interp
from wafo.containers import PlotData from wafo.containers import PlotData
from wafo.plotbackend import plotbackend from wafo.plotbackend import plotbackend
@ -37,6 +38,7 @@ from numpy import (inf, pi, zeros, ones, sqrt, where, log, exp, cos, sin,
from numpy.fft import fft # @UnusedImport from numpy.fft import fft # @UnusedImport
from numpy.random import randn from numpy.random import randn
from matplotlib.mlab import psd, detrend_mean from matplotlib.mlab import psd, detrend_mean
from scipy.signal.windows import parzen
floatinfo = finfo(float) floatinfo = finfo(float)
@ -1955,93 +1957,94 @@ class TimeSeries(PlotData):
ne=7, gvar=1) ne=7, gvar=1)
opt.update(options) opt.update(options)
xn = self.data.copy().ravel() _xn = self.data.copy().ravel()
n = len(xn) # n = len(xn)
#
if n < 2: # if n < 2:
raise ValueError('The vector must have more than 2 elements!') # raise ValueError('The vector must have more than 2 elements!')
#
param = opt.param # param = opt.param
plotflags = dict(none=0, off=0, final=1, iter=2) # plotflags = dict(none=0, off=0, final=1, iter=2)
plotflag = plotflags.get(opt.plotflag, opt.plotflag) # plotflag = plotflags.get(opt.plotflag, opt.plotflag)
#
olddef = def_ # olddef = def_
method = 'approx' # method = 'approx'
ptime = opt.delay # pause for ptime sec if plotflag=2 # ptime = opt.delay # pause for ptime sec if plotflag=2
#
expect1 = 1 # first reconstruction by expectation? 1=yes 0=no # expect1 = 1 # first reconstruction by expectation? 1=yes 0=no
expect = 1 # reconstruct by expectation? 1=yes 0=no # expect = 1 # reconstruct by expectation? 1=yes 0=no
tol = 0.001 # absolute tolerance of e(g_new-g_old) # tol = 0.001 # absolute tolerance of e(g_new-g_old)
#
cmvmax = 100 # cmvmax = 100
# if number of consecutive missing values (cmv) are longer they # # if number of consecutive missing values (cmv) are longer they
# are not used in estimation of g, due to the fact that the # # are not used in estimation of g, due to the fact that the
# conditional expectation approaches zero as the length to # # conditional expectation approaches zero as the length to
# the closest known points increases, see below in the for loop # # the closest known points increases, see below in the for loop
dT = self.sampling_period() # dT = self.sampling_period()
#
Lm = np.minimum([n, 200, int(200/dT)]) # Lagmax 200 seconds # Lm = np.minimum([n, 200, int(200/dT)]) # Lagmax 200 seconds
if L is not None: # if L is not None:
Lm = max(L, Lm) # Lm = max(L, Lm)
# Lma: size of the moving average window used for detrending the # # Lma: size of the moving average window used for detrending the
# reconstructed signal # # reconstructed signal
Lma = 1500 # Lma = 1500
if inds is not None: # if inds is not None:
xn[inds] = np.nan # xn[inds] = np.nan
#
inds = isnan(xn) # inds = isnan(xn)
if not inds.any(): # if not inds.any():
raise ValueError('No spurious data given') # raise ValueError('No spurious data given')
#
endpos = np.diff(inds) # endpos = np.diff(inds)
strtpos = np.flatnonzero(endpos > 0) # strtpos = np.flatnonzero(endpos > 0)
endpos = np.flatnonzero(endpos < 0) # endpos = np.flatnonzero(endpos < 0)
#
indg = np.flatnonzero(1-inds) # indices to good points # indg = np.flatnonzero(1-inds) # indices to good points
inds = np.flatnonzero(inds) # indices to spurious points # inds = np.flatnonzero(inds) # indices to spurious points
#
indNaN = [] # indices to points omitted in the covariance estimation # indNaN = [] # indices to points omitted in the covariance estimation
indr = np.arange(n) # indices to point used in the estimation of g # indr = np.arange(n) # indices to point used in the estimation of g
#
# Finding more than cmvmax consecutive spurios points. # # Finding more than cmvmax consecutive spurios points.
# They will not be used in the estimation of g and are thus removed # # They will not be used in the estimation of g and are thus removed
# from indr. # # from indr.
#
if strtpos.size > 0 and (endpos.size == 0 or endpos[-1] < strtpos[-1]): # if strtpos.size > 0 and (endpos.size == 0 or
if (n - strtpos[-1]) > cmvmax: # endpos[-1] < strtpos[-1]):
indNaN = indr[strtpos[-1]+1:n] # if (n - strtpos[-1]) > cmvmax:
indr = indr[:strtpos[-1]+1] # indNaN = indr[strtpos[-1]+1:n]
strtpos = strtpos[:-1] # indr = indr[:strtpos[-1]+1]
# strtpos = strtpos[:-1]
if endpos.size > 0 and (strtpos.size == 0 or endpos[0] < strtpos[0]): #
if endpos[0] > cmvmax: # if endpos.size > 0 and (strtpos.size == 0 or endpos[0] < strtpos[0]):
indNaN = np.hstack((indNaN, indr[:endpos[0]])) # if endpos[0] > cmvmax:
indr = indr[endpos[0]:] # indNaN = np.hstack((indNaN, indr[:endpos[0]]))
# indr = indr[endpos[0]:]
strtpos = strtpos-endpos[0] #
endpos = endpos-endpos[0] # strtpos = strtpos-endpos[0]
endpos = endpos[1:] # endpos = endpos-endpos[0]
# endpos = endpos[1:]
for ix in range(len(strtpos)-1, -1, -1): #
if (endpos[ix]-strtpos[ix] > cmvmax): # for ix in range(len(strtpos)-1, -1, -1):
indNaN = np.hstack((indNaN, indr[strtpos[ix]+1:endpos[ix]])) # if (endpos[ix]-strtpos[ix] > cmvmax):
# remove this when estimating the transform # indNaN = np.hstack((indNaN, indr[strtpos[ix]+1:endpos[ix]]))
del indr[strtpos[ix]+1:endpos[ix]] # # remove this when estimating the transform
# del indr[strtpos[ix]+1:endpos[ix]]
if len(indr) < 0.1*n: #
raise ValueError('Not possible to reconstruct signal') # if len(indr) < 0.1*n:
# raise ValueError('Not possible to reconstruct signal')
if indNaN.any(): #
indNaN = np.sort(indNaN) # if indNaN.any():
# indNaN = np.sort(indNaN)
# initial reconstruction attempt #
# xn(indg,2) = detrendma(xn(indg,2),1500); # # initial reconstruction attempt
# [g, test, cmax, irr, g2] = dat2tr(xn(indg,:),def,opt); # xn[indg, 1] = detrendma(xn[indg, 1], 1500)
# xnt=xn; # g, test, cmax, irr, g2 = dat2tr(xn[indg, :], def_, opt)
# xnt(indg,:)=dat2gaus(xn(indg,:),g); # xnt = xn.copy()
# xnt(inds,2)=NaN; # xnt[indg,:] = dat2gaus(xn[indg,:], g)
# rwin=findrwin(xnt,Lm,L); # xnt[inds, 1] = np.nan
# disp(['First reconstruction attempt, e(g-u)=', num2str(test)] ) # rwin = findrwin(xnt, Lm, L)
# print('First reconstruction attempt, e(g-u) = {}'.format(test))
# # old simcgauss # # old simcgauss
# [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds); # [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds);
# if expect1,# reconstruction by expectation # if expect1,# reconstruction by expectation
@ -2056,7 +2059,7 @@ class TimeSeries(PlotData):
# #
# bias = mean(xn(:,2)); # bias = mean(xn(:,2));
# xn(:,2)=xn(:,2)-bias; # bias correction # xn(:,2)=xn(:,2)-bias; # bias correction
#
# if plotflag==2 # if plotflag==2
# clf # clf
# mind=1:min(1500,n); # mind=1:min(1500,n);
@ -2091,10 +2094,12 @@ class TimeSeries(PlotData):
# pause(ptime) # pause(ptime)
# end # end
# #
# #tobs=sqrt((param(2)-param(1))/(param(3)-1)*sum((g_old(:,2)-g(:,2)).^2)) # #tobs=sqrt((param(2)-param(1))/(param(3)-1)*
# sum((g_old(:,2)-g(:,2)).^2))
# # new call # # new call
# tobs=sqrt((param(2)-param(1))/(param(3)-1).... # tobs=sqrt((param(2)-param(1))/(param(3)-1)
# *sum((g(:,2)-interp1(g_old(:,1)-bias, g_old(:,2),g(:,1),'spline')).^2)); # *sum((g(:,2)-interp1(g_old(:,1)-bias, g_old(:,2),g(:,1),
# 'spline')).^2));
# #
# if ix>1 # if ix>1
# if tol>tobs2 && tol>tobs, # if tol>tobs2 && tol>tobs,
@ -2107,7 +2112,8 @@ class TimeSeries(PlotData):
# xnt=dat2gaus(xn,g); # xnt=dat2gaus(xn,g);
# if ~isempty(indNaN), xnt(indNaN,2)=NaN; end # if ~isempty(indNaN), xnt(indNaN,2)=NaN; end
# rwin=findrwin(xnt,Lm,L); # rwin=findrwin(xnt,Lm,L);
# disp(['Simulation nr: ', int2str(ix), ' of ' num2str(Nsim),' e(g-g_old)=', num2str(tobs), ', e(g-u)=', num2str(test)]) # disp(['Simulation nr: ', int2str(ix), ' of ' num2str(Nsim),
# ' e(g-g_old)=', num2str(tobs), ', e(g-u)=', num2str(test)])
# [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds); # [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds);
# #
# if expect, # if expect,
@ -2149,7 +2155,8 @@ class TimeSeries(PlotData):
# end # end
# #
# if plotflag==2 && length(xn)<10000, # if plotflag==2 && length(xn)<10000,
# waveplot(xn,[xn(inds,1) muLStd ;xn(inds,1) muUStd ], 6,round(n/3000),[]) # waveplot(xn,[xn(inds,1) muLStd ;xn(inds,1) muUStd ],
# 6,round(n/3000),[])
# legend('reconstructed','2 stdev') # legend('reconstructed','2 stdev')
# #axis([770 850 -1 1]) # #axis([770 850 -1 1])
# #axis([1300 1325 -1 1]) # #axis([1300 1325 -1 1])
@ -2159,22 +2166,20 @@ class TimeSeries(PlotData):
# #
# return # return
# #
# function r=findrwin(xnt,Lm,L) # def findrwin(xnt, Lm, L=None):
# r=dat2cov(xnt,Lm);#computes ACF # r = dat2cov(xnt, Lm) # computes ACF
# #finding where ACF is less than 2 st. deviations . # # finding where ACF is less than 2 st. deviations .
# # in order to find a better L value # # in order to find a better L value
# if nargin<3||isempty(L) # if L is None:
# L=find(abs(r.R)>2*r.stdev)+1; # L = np.flatnonzero(np.abs(r.R) > 2 * r.stdev)
# if isempty(L), # pab added this check 09.10.2000 # if len(L) == 0:
# L = Lm; # L = Lm;
# else # else:
# L = min([floor(4/3*L(end)) Lm]); # L = min(np.floor(4/3*(L[-1] + 1), Lm)
# end # win = parzen(2 * L - 1)
# end # r.R[:L] = win[L:2*L-1] * r.R[:L]
# win=parzen(2*L-1); # r.R[L:] = 0
# r.R(1:L)=win(L:2*L-1).*r.R(1:L); # return r
# r.R(L+1:end)=0;
# return
def plot_wave(self, sym1='k.', ts=None, sym2='k+', nfig=None, nsub=None, def plot_wave(self, sym1='k.', ts=None, sym2='k+', nfig=None, nsub=None,
sigma=None, vfact=3): sigma=None, vfact=3):

Loading…
Cancel
Save