|
|
@ -15,7 +15,7 @@
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import division
|
|
|
|
from wafo.transform.core import TrData
|
|
|
|
from wafo.transform.core import TrData
|
|
|
|
from wafo.transform.models import TrHermite, TrOchi, TrLinear
|
|
|
|
from wafo.transform.models import TrHermite, TrOchi, TrLinear
|
|
|
|
from wafo.stats import edf
|
|
|
|
from wafo.stats import edf, distributions
|
|
|
|
from wafo.misc import (nextpow2, findtp, findrfc, findtc, findcross,
|
|
|
|
from wafo.misc import (nextpow2, findtp, findrfc, findtc, findcross,
|
|
|
|
ecross, JITImport, DotDict, gravity)
|
|
|
|
ecross, JITImport, DotDict, gravity)
|
|
|
|
from wafodata import WafoData
|
|
|
|
from wafodata import WafoData
|
|
|
@ -85,10 +85,10 @@ class LevelCrossings(WafoData):
|
|
|
|
xlab='Levels', ylab='Count',
|
|
|
|
xlab='Levels', ylab='Count',
|
|
|
|
plotmethod='semilogy',
|
|
|
|
plotmethod='semilogy',
|
|
|
|
plot_args=['b'],
|
|
|
|
plot_args=['b'],
|
|
|
|
plot_args_children=['r--'],)
|
|
|
|
plot_args_children=['r--'])
|
|
|
|
options.update(**kwds)
|
|
|
|
options.update(**kwds)
|
|
|
|
super(LevelCrossings, self).__init__(*args, **options)
|
|
|
|
super(LevelCrossings, self).__init__(*args, **options)
|
|
|
|
|
|
|
|
self.intensity = kwds.get('intensity', False)
|
|
|
|
self.sigma = kwds.get('sigma', None)
|
|
|
|
self.sigma = kwds.get('sigma', None)
|
|
|
|
self.mean = kwds.get('mean', None)
|
|
|
|
self.mean = kwds.get('mean', None)
|
|
|
|
#self.setplotter(plotmethod='step')
|
|
|
|
#self.setplotter(plotmethod='step')
|
|
|
@ -111,6 +111,226 @@ class LevelCrossings(WafoData):
|
|
|
|
y = cmax * exp(-x ** 2 / 2.0)
|
|
|
|
y = cmax * exp(-x ** 2 / 2.0)
|
|
|
|
self.children = [WafoData(y, self.args)]
|
|
|
|
self.children = [WafoData(y, self.args)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extrapolate(self, u_min=None, u_max=None, method='ml',dist='genpar', plotflag=0):
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
Returns an extrapolated level crossing spectrum
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
-----------
|
|
|
|
|
|
|
|
u_min, u_max : real scalars
|
|
|
|
|
|
|
|
extrapolate below u_min and above u_max.
|
|
|
|
|
|
|
|
method : string
|
|
|
|
|
|
|
|
describing the method of estimation. Options are:
|
|
|
|
|
|
|
|
'ml' : Maximum Likelihood method (default)
|
|
|
|
|
|
|
|
'mps': Maximum Product Spacing method
|
|
|
|
|
|
|
|
dist : string
|
|
|
|
|
|
|
|
defining distribution function. Options are:
|
|
|
|
|
|
|
|
genpareto : Generalized Pareto distribution (GPD)
|
|
|
|
|
|
|
|
expon : Exponential distribution (GPD with k=0)
|
|
|
|
|
|
|
|
rayleigh : Rayleigh distribution
|
|
|
|
|
|
|
|
plotflag : scalar integer
|
|
|
|
|
|
|
|
1: Diagnostic plots. (default)
|
|
|
|
|
|
|
|
0: Don't plot diagnostic plots.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
lc : LevelCrossing object
|
|
|
|
|
|
|
|
with the estimated level crossing spectrum
|
|
|
|
|
|
|
|
Est = Estimated parameters. [struct array]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Extrapolates the level crossing spectrum (LC) for high and for low levels.
|
|
|
|
|
|
|
|
The tails of the LC is fited to a survival function of a GPD.
|
|
|
|
|
|
|
|
H(x) = (1-k*x/s)^(1/k) (GPD)
|
|
|
|
|
|
|
|
The use of GPD is motivated by POT methods in extreme value theory.
|
|
|
|
|
|
|
|
For k=0 the GPD is the exponential distribution
|
|
|
|
|
|
|
|
H(x) = exp(-x/s), k=0 (expon)
|
|
|
|
|
|
|
|
The tails with the survival function of a Rayleigh distribution.
|
|
|
|
|
|
|
|
H(x) = exp(-((x+x0).^2-x0^2)/s^2) (rayleigh)
|
|
|
|
|
|
|
|
where x0 is the value where the LC has its maximum.
|
|
|
|
|
|
|
|
The method 'gpd' uses the GPD. We recommend the use of 'gpd,ml'.
|
|
|
|
|
|
|
|
The method 'exp' uses the Exp.
|
|
|
|
|
|
|
|
The method 'ray' uses Ray, and should be used if the load is a Gaussian process.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
S = jonswap;
|
|
|
|
|
|
|
|
x = spec2sdat(S,100000,0.1,[],'random');
|
|
|
|
|
|
|
|
lc = dat2lc(x); s = std(x(:,2));
|
|
|
|
|
|
|
|
[lcEst,Est] = extralc(lc,s*[-2 2]);
|
|
|
|
|
|
|
|
[lcEst,Est] = extralc(lc,s*[-2 2],'exp,ml');
|
|
|
|
|
|
|
|
[lcEst,Est] = extralc(lc,s*[-2 2],'ray,ml');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
|
|
|
--------
|
|
|
|
|
|
|
|
cmat2extralc, rfmextrapolate, lc2rfmextreme, extralc, fitgenpar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
Johannesson, P., and Thomas, J-.J. (2000):
|
|
|
|
|
|
|
|
Extrapolation of Rainflow Matrices.
|
|
|
|
|
|
|
|
Preprint 2000:82, Mathematical statistics, Chalmers, pp. 18.
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i_max = self.data.argmax()
|
|
|
|
|
|
|
|
c_max = self.data[i_max]
|
|
|
|
|
|
|
|
# Maximum of lc
|
|
|
|
|
|
|
|
lc_max = self.args[i_max]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if u_min is None or u_max is None:
|
|
|
|
|
|
|
|
fraction = sqrt(c_max)
|
|
|
|
|
|
|
|
i = np.flatnonzero(self.data>fraction)
|
|
|
|
|
|
|
|
if u_min is None :
|
|
|
|
|
|
|
|
u_min = self.args[i.min()]
|
|
|
|
|
|
|
|
if u_max is None:
|
|
|
|
|
|
|
|
u_max = self.args[i.max()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# # Extrapolate LC for high levels
|
|
|
|
|
|
|
|
# [lcEst.High,Est.High] = self._extrapolate(lc,u_max,u_max-lc_max,method, dist);
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# # Extrapolate LC for low levels
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# lc1 = [-flipud(lc(:,1)) flipud(lc(:,2))];
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# [lcEst1,Est1] = extrapolate(lc1,-u(1),method,lc_max-u(1));
|
|
|
|
|
|
|
|
# lcEst.Low = [-flipud(lcEst1(:,1)) flipud(lcEst1(:,2:end))];
|
|
|
|
|
|
|
|
# Est.Low = Est1;
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# if plotflag
|
|
|
|
|
|
|
|
# semilogx(lc(:,2),lc(:,1),lcEst.High(:,2),lcEst.High(:,1),lcEst.Low(:,2),lcEst.Low(:,1))
|
|
|
|
|
|
|
|
# end
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
###
|
|
|
|
|
|
|
|
# def _extrapolate(self, lcx,lcf,u,offset,method,dist)
|
|
|
|
|
|
|
|
# # Extrapolate the level crossing spectra for high levels
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# method = method.lower()
|
|
|
|
|
|
|
|
# dist = dist.lower()
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# # Excedences over level u
|
|
|
|
|
|
|
|
# Iu = lcx>u;
|
|
|
|
|
|
|
|
# lcx1, lcf1 = lcx[Iu], lcf[Iu]
|
|
|
|
|
|
|
|
# lcf3,lcx3 = _make_increasing(lcf1[::-1],lcx1[::-1])
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# # Corrected by PJ 17-Feb-2004
|
|
|
|
|
|
|
|
# lc3=[0 0; lc3];
|
|
|
|
|
|
|
|
# x=[];
|
|
|
|
|
|
|
|
# for k=2:length(lc3(:,1))
|
|
|
|
|
|
|
|
# nk = lc3(k,2)-lc3(k-1,2);
|
|
|
|
|
|
|
|
# x = [x; ones(nk,1)*lc3(k,1)];
|
|
|
|
|
|
|
|
# #end
|
|
|
|
|
|
|
|
# x = x-u;
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# # Estimate tail
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# if dist=='genpareto':
|
|
|
|
|
|
|
|
# genpareto = distributions.genpareto
|
|
|
|
|
|
|
|
# phat = genpareto.fit2(x, floc=0, method=method)
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
## Est.k = phat.params(1);
|
|
|
|
|
|
|
|
## Est.s = phat.params(2);
|
|
|
|
|
|
|
|
## if isnan(phat.fixpar(3))
|
|
|
|
|
|
|
|
## Est.cov = phat.covariance;
|
|
|
|
|
|
|
|
## else
|
|
|
|
|
|
|
|
## Est.cov = phat.covariance(1:2,1:2);
|
|
|
|
|
|
|
|
## end
|
|
|
|
|
|
|
|
## if Est.k>0,
|
|
|
|
|
|
|
|
## Est.UpperLimit = u+Est.s/Est.k;
|
|
|
|
|
|
|
|
## end
|
|
|
|
|
|
|
|
# df = 0.01
|
|
|
|
|
|
|
|
# xF = np.arange(0.0,4+df/2,df)
|
|
|
|
|
|
|
|
# F = phat.cdf(xF)
|
|
|
|
|
|
|
|
# Est.lcu = interp1(lcx,lcf,u)+1
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# # Calculate 90 # confidence region, an ellipse, for (k,s)
|
|
|
|
|
|
|
|
# [B,D] = eig(Est.cov);
|
|
|
|
|
|
|
|
# b = [Est.k; Est.s];
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# r = sqrt(-2*log(1-90/100)); # 90 # confidence sphere
|
|
|
|
|
|
|
|
# Nc = 16+1;
|
|
|
|
|
|
|
|
# ang = linspace(0,2*pi,Nc);
|
|
|
|
|
|
|
|
# c0 = [r*sqrt(D(1,1))*sin(ang); r*sqrt(D(2,2))*cos(ang)]; # 90# Circle
|
|
|
|
|
|
|
|
# # plot(c0(1,:),c0(2,:))
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# c1 = B*c0+b*ones(1,length(c0)); # Transform to ellipse for (k,s)
|
|
|
|
|
|
|
|
# # plot(c1(1,:),c1(2,:)), hold on
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# # Calculate conf.int for lcu
|
|
|
|
|
|
|
|
# # Assumtion: lcu is Poisson distributed
|
|
|
|
|
|
|
|
# # Poissin distr. approximated by normal when calculating conf. int.
|
|
|
|
|
|
|
|
# dXX = 1.64*sqrt(Est.lcu); # 90 # quantile for lcu
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# lcEstCu = zeros(length(xF),Nc);
|
|
|
|
|
|
|
|
# lcEstCl = lcEstCu;
|
|
|
|
|
|
|
|
# for i=1:Nc
|
|
|
|
|
|
|
|
# k=c1(1,i);
|
|
|
|
|
|
|
|
# s=c1(2,i);
|
|
|
|
|
|
|
|
# F2 = cdfgenpar(xF,k,s);
|
|
|
|
|
|
|
|
# lcEstCu(:,i) = (Est.lcu+dXX)*(1-F2);
|
|
|
|
|
|
|
|
# lcEstCl(:,i) = (Est.lcu-dXX)*(1-F2);
|
|
|
|
|
|
|
|
# end
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# lcEstCI = [min(lcEstCl')' max(lcEstCu')'];
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# lcEst = [xF+u Est.lcu*(1-F) lcEstCI];
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# case 'exp'
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# n = length(x);
|
|
|
|
|
|
|
|
# s = mean(x);
|
|
|
|
|
|
|
|
# cov = s/n;
|
|
|
|
|
|
|
|
# Est.s = s;
|
|
|
|
|
|
|
|
# Est.cov = cov;
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# xF = (0.0:0.01:4)';
|
|
|
|
|
|
|
|
# F = 1-exp(-xF/s);
|
|
|
|
|
|
|
|
# Est.lcu = interp1(lc(:,1),lc(:,2),u)+1;
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# lcEst = [xF+u Est.lcu*(1-F)];
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# case 'ray'
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# n = length(x);
|
|
|
|
|
|
|
|
# Sx = sum((x+offset).^2-offset^2);
|
|
|
|
|
|
|
|
# s=sqrt(Sx/n); # Shape parameter
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# Est.s = s;
|
|
|
|
|
|
|
|
# Est.cov = NaN;
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# xF = (0.0:0.01:4)';
|
|
|
|
|
|
|
|
# F = 1 - exp(-((xF+offset).^2-offset^2)/s^2);
|
|
|
|
|
|
|
|
# Est.lcu = interp1(lc(:,1),lc(:,2),u)+1;
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# lcEst = [xF+u Est.lcu*(1-F)];
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# otherwise
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# error(['Unknown method: ' method]);
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# end
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# ## End extrapolate
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# def _make_increasing(f, t=None):
|
|
|
|
|
|
|
|
# # Makes the signal x strictly increasing.
|
|
|
|
|
|
|
|
# #
|
|
|
|
|
|
|
|
# # x = two column matrix with times in first column and values in the second.
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# n = len(f)
|
|
|
|
|
|
|
|
# if t is None:
|
|
|
|
|
|
|
|
# t = np.arange(n)
|
|
|
|
|
|
|
|
# ff = []
|
|
|
|
|
|
|
|
# tt = []
|
|
|
|
|
|
|
|
# ff.append(f[0])
|
|
|
|
|
|
|
|
# tt.append(t[0])
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# for i in xrange(1,n):
|
|
|
|
|
|
|
|
# if f[i]>ff[-1]
|
|
|
|
|
|
|
|
# ff.append(f[i])
|
|
|
|
|
|
|
|
# tt.append(t[i])
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# return np.asarray(ff), np.asarray(tt)
|
|
|
|
|
|
|
|
|
|
|
|
def sim(self, ns, alpha):
|
|
|
|
def sim(self, ns, alpha):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Simulates process with given irregularity factor and crossing spectrum
|
|
|
|
Simulates process with given irregularity factor and crossing spectrum
|
|
|
@ -142,25 +362,30 @@ class LevelCrossings(WafoData):
|
|
|
|
>>> mm = tp.cycle_pairs()
|
|
|
|
>>> mm = tp.cycle_pairs()
|
|
|
|
>>> lc = mm.level_crossings()
|
|
|
|
>>> lc = mm.level_crossings()
|
|
|
|
|
|
|
|
|
|
|
|
xs2 = lc.sim(n,alpha)
|
|
|
|
>>> xs2 = lc.sim(n,alpha)
|
|
|
|
ts2 = mat2timeseries(xs2)
|
|
|
|
>>> ts2 = mat2timeseries(xs2)
|
|
|
|
Se = ts2.tospecdata()
|
|
|
|
>>> Se = ts2.tospecdata(L=324)
|
|
|
|
|
|
|
|
|
|
|
|
S.plot('b')
|
|
|
|
>>> alpha2 = Se.characteristic('alpha')[0]
|
|
|
|
Se.plot('r')
|
|
|
|
>>> alpha2
|
|
|
|
alpha2 = Se.characteristic('alpha')[0]
|
|
|
|
array([ 0.68382343])
|
|
|
|
alpha-alpha2
|
|
|
|
>>> alpha-alpha2
|
|
|
|
|
|
|
|
array([ 0.01620704])
|
|
|
|
spec2char(Se,'alpha')
|
|
|
|
|
|
|
|
lc2 = dat2lc(xs2)
|
|
|
|
>>> h0 = S.plot('b')
|
|
|
|
figure(gcf+1)
|
|
|
|
>>> h1 = Se.plot('r')
|
|
|
|
subplot(211)
|
|
|
|
|
|
|
|
lcplot(lc2)
|
|
|
|
>>> lc2 = ts2.turning_points().cycle_pairs().level_crossings()
|
|
|
|
subplot(212)
|
|
|
|
|
|
|
|
lcplot(lc)
|
|
|
|
>>> import pylab as plt
|
|
|
|
|
|
|
|
>>> h = plt.subplot(211)
|
|
|
|
|
|
|
|
>>> h2 = lc2.plot()
|
|
|
|
|
|
|
|
>>> h = plt.subplot(212)
|
|
|
|
|
|
|
|
>>> h0 = lc.plot()
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
# TODO % add a good example
|
|
|
|
# TODO: add a good example
|
|
|
|
f = linspace(0, 0.49999, 1000)
|
|
|
|
f = linspace(0, 0.49999, 1000)
|
|
|
|
rho_st = 2. * sin(f * pi) ** 2 - 1.
|
|
|
|
rho_st = 2. * sin(f * pi) ** 2 - 1.
|
|
|
|
tmp = alpha * arcsin(sqrt((1. + rho_st) / 2))
|
|
|
|
tmp = alpha * arcsin(sqrt((1. + rho_st) / 2))
|
|
|
@ -179,13 +404,13 @@ class LevelCrossings(WafoData):
|
|
|
|
sigma2 = r0 + a1 * r1 + a2 * r2
|
|
|
|
sigma2 = r0 + a1 * r1 + a2 * r2
|
|
|
|
#randn = np.random.randn
|
|
|
|
#randn = np.random.randn
|
|
|
|
e = randn(ns) * sqrt(sigma2)
|
|
|
|
e = randn(ns) * sqrt(sigma2)
|
|
|
|
e[:1] = 0.0
|
|
|
|
e[:2] = 0.0
|
|
|
|
L0 = randn(1)
|
|
|
|
L0 = randn(1)
|
|
|
|
L0 = vstack((L0, r1 * L0 + sqrt(1 - r2 ** 2) * randn(1)))
|
|
|
|
L0 = hstack((L0, r1 * L0 + sqrt(1 - r2 ** 2) * randn(1)))
|
|
|
|
#%Simulate the process, starting in L0
|
|
|
|
#%Simulate the process, starting in L0
|
|
|
|
lfilter = scipy.signal.lfilter
|
|
|
|
lfilter = scipy.signal.lfilter
|
|
|
|
# TODO: lfilter crashes the example
|
|
|
|
z0 = lfilter([1, a1, a2], ones(1), L0)
|
|
|
|
L = lfilter(ones(1), [1, a1, a2], e, lfilter([1, a1, a2], ones(1), L0))
|
|
|
|
L, unused_zf = lfilter(ones(1), [1, a1, a2], e, axis=0, zi=z0)
|
|
|
|
|
|
|
|
|
|
|
|
epsilon = 1.01
|
|
|
|
epsilon = 1.01
|
|
|
|
min_L = min(L)
|
|
|
|
min_L = min(L)
|
|
|
@ -213,20 +438,24 @@ class LevelCrossings(WafoData):
|
|
|
|
sumcr = trapz(self.data, self.args)
|
|
|
|
sumcr = trapz(self.data, self.args)
|
|
|
|
lc = self.data / sumcr
|
|
|
|
lc = self.data / sumcr
|
|
|
|
lc1 = self.args
|
|
|
|
lc1 = self.args
|
|
|
|
mcr = trapz(lc1 * lc, lc1)
|
|
|
|
mcr = trapz(lc1 * lc, lc1) if self.mean is None else self.mean
|
|
|
|
|
|
|
|
if self.sigma is None:
|
|
|
|
scr = trapz(lc1 ** 2 * lc, lc1)
|
|
|
|
scr = trapz(lc1 ** 2 * lc, lc1)
|
|
|
|
scr = sqrt(scr - mcr ** 2)
|
|
|
|
scr = sqrt(scr - mcr ** 2)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
scr = self.sigma
|
|
|
|
|
|
|
|
lc2 = LevelCrossings(lc, lc1, mean=mcr, sigma=scr, intensity=True)
|
|
|
|
|
|
|
|
|
|
|
|
lc2 = LevelCrossings(lc, lc1, mean=mcr, sigma=scr)
|
|
|
|
g = lc2.trdata()[0]
|
|
|
|
|
|
|
|
|
|
|
|
g = lc2.trdata()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#f = [u, u]
|
|
|
|
f = g.gauss2dat(Z)
|
|
|
|
f = g.dat2gauss(Z)
|
|
|
|
|
|
|
|
G = TrData(f, u)
|
|
|
|
G = TrData(f, u)
|
|
|
|
|
|
|
|
|
|
|
|
process = G.dat2gauss(L)
|
|
|
|
process = G.dat2gauss(L)
|
|
|
|
return np.vstack((arange(len(process)), process)).T
|
|
|
|
return np.vstack((arange(len(process)), process)).T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##
|
|
|
|
##
|
|
|
|
##
|
|
|
|
##
|
|
|
|
## %Check the result without reference to getrfc:
|
|
|
|
## %Check the result without reference to getrfc:
|
|
|
@ -391,7 +620,13 @@ class LevelCrossings(WafoData):
|
|
|
|
cor2 = 0
|
|
|
|
cor2 = 0
|
|
|
|
|
|
|
|
|
|
|
|
lc22 = hstack((0, cumtrapz(lc2, lc1) + cor1))
|
|
|
|
lc22 = hstack((0, cumtrapz(lc2, lc1) + cor1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.intensity:
|
|
|
|
|
|
|
|
lc22 = (lc22 + 0.5/ncr) / (lc22[-1] + cor2 + 1./ncr)
|
|
|
|
|
|
|
|
else:
|
|
|
|
lc22 = (lc22 + 0.5) / (lc22[-1] + cor2 + 1)
|
|
|
|
lc22 = (lc22 + 0.5) / (lc22[-1] + cor2 + 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lc11 = (lc1 - mean) / sigma
|
|
|
|
lc11 = (lc1 - mean) / sigma
|
|
|
|
|
|
|
|
|
|
|
|
lc22 = invnorm(lc22) #- ymean
|
|
|
|
lc22 = invnorm(lc22) #- ymean
|
|
|
@ -603,7 +838,7 @@ class CyclePairs(WafoData):
|
|
|
|
if intensity:
|
|
|
|
if intensity:
|
|
|
|
dcount = dcount/self.time
|
|
|
|
dcount = dcount/self.time
|
|
|
|
ylab = 'Intensity [count/sec]'
|
|
|
|
ylab = 'Intensity [count/sec]'
|
|
|
|
return LevelCrossings(dcount, levels, mean=self.mean, sigma=self.sigma, ylab=ylab)
|
|
|
|
return LevelCrossings(dcount, levels, mean=self.mean, sigma=self.sigma, ylab=ylab, intensity=intensity)
|
|
|
|
|
|
|
|
|
|
|
|
class TurningPoints(WafoData):
|
|
|
|
class TurningPoints(WafoData):
|
|
|
|
'''
|
|
|
|
'''
|
|
|
@ -680,7 +915,7 @@ class TurningPoints(WafoData):
|
|
|
|
t = self.args[ind]
|
|
|
|
t = self.args[ind]
|
|
|
|
except:
|
|
|
|
except:
|
|
|
|
t = ind
|
|
|
|
t = ind
|
|
|
|
mean = self.mean()
|
|
|
|
mean = self.mean
|
|
|
|
sigma = self.sigma
|
|
|
|
sigma = self.sigma
|
|
|
|
return TurningPoints(self.data[ind], t, mean=mean, sigma=sigma)
|
|
|
|
return TurningPoints(self.data[ind], t, mean=mean, sigma=sigma)
|
|
|
|
|
|
|
|
|
|
|
|