|
|
|
@ -14,6 +14,7 @@ from numpy import (abs, amax, any, logical_and, arange, linspace, atleast_1d,
|
|
|
|
|
from scipy.special import gammaln
|
|
|
|
|
import types
|
|
|
|
|
import warnings
|
|
|
|
|
from wafo import plotbackend
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
import wafo.c_library as clib
|
|
|
|
@ -26,7 +27,7 @@ __all__ = ['JITImport', 'DotDict', 'Bunch', 'printf', 'sub_dict_select',
|
|
|
|
|
'parse_kwargs', 'ecross', 'findtc', 'findtp', 'findcross',
|
|
|
|
|
'findextrema', 'findrfc', 'rfcfilter', 'common_shape', 'argsreduce',
|
|
|
|
|
'stirlerr', 'getshipchar', 'betaloge', 'gravity', 'nextpow2',
|
|
|
|
|
'discretize', 'pol2cart', 'cart2pol', 'ndgrid', 'meshgrid']
|
|
|
|
|
'discretize', 'pol2cart', 'cart2pol', 'ndgrid', 'meshgrid', 'histgrm']
|
|
|
|
|
|
|
|
|
|
class JITImport(object):
|
|
|
|
|
'''
|
|
|
|
@ -246,7 +247,7 @@ def _findcross(xn):
|
|
|
|
|
|
|
|
|
|
n = len(xn)
|
|
|
|
|
iz, = (xn == 0).nonzero()
|
|
|
|
|
if len(iz)>0:
|
|
|
|
|
if len(iz) > 0:
|
|
|
|
|
# Trick to avoid turning points on the crossinglevel.
|
|
|
|
|
if iz[0] == 0:
|
|
|
|
|
if len(iz) == n:
|
|
|
|
@ -254,15 +255,15 @@ def _findcross(xn):
|
|
|
|
|
return zeros(0, dtype=np.int)
|
|
|
|
|
|
|
|
|
|
diz = diff(iz)
|
|
|
|
|
if len(diz)>0 and (diz>1).any():
|
|
|
|
|
if len(diz) > 0 and (diz > 1).any():
|
|
|
|
|
ix = iz[(diz > 1).argmax()]
|
|
|
|
|
else:
|
|
|
|
|
ix = iz[-1]
|
|
|
|
|
|
|
|
|
|
#x(ix) is a up crossing if x(1:ix) = v and x(ix+1) > v.
|
|
|
|
|
#x(ix) is a downcrossing if x(1:ix) = v and x(ix+1) < v.
|
|
|
|
|
xn[0:ix+1] = -xn[ix + 1]
|
|
|
|
|
iz = iz[ix+1::]
|
|
|
|
|
xn[0:ix + 1] = -xn[ix + 1]
|
|
|
|
|
iz = iz[ix + 1::]
|
|
|
|
|
|
|
|
|
|
for ix in iz.tolist():
|
|
|
|
|
xn[ix] = xn[ix - 1]
|
|
|
|
@ -1400,7 +1401,7 @@ def discretize(fun, a, b, tol=0.005, n=5):
|
|
|
|
|
err = 0.5 * amax(abs((y00 - y) / (abs(y00 + y) + tiny)))
|
|
|
|
|
return x, y
|
|
|
|
|
|
|
|
|
|
def discretize2(fun, a,b,tol=0.005, n=5):
|
|
|
|
|
def discretize2(fun, a, b, tol=0.005, n=5):
|
|
|
|
|
'''
|
|
|
|
|
Automatic adaptive discretization of function
|
|
|
|
|
|
|
|
|
@ -1432,23 +1433,23 @@ def discretize2(fun, a,b,tol=0.005, n=5):
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
tiny = floatinfo.tiny
|
|
|
|
|
n += (mod(n,2)==0) # make sure n is odd
|
|
|
|
|
n += (mod(n, 2) == 0) # make sure n is odd
|
|
|
|
|
x = linspace(a, b, n)
|
|
|
|
|
fx = fun(x)
|
|
|
|
|
|
|
|
|
|
n2 = (n-1)/2
|
|
|
|
|
erri = hstack( (zeros((n2,1)), ones((n2,1)) )).ravel()
|
|
|
|
|
n2 = (n - 1) / 2
|
|
|
|
|
erri = hstack((zeros((n2, 1)), ones((n2, 1)))).ravel()
|
|
|
|
|
err = erri.max()
|
|
|
|
|
err0 = inf
|
|
|
|
|
#while (err != err0 and err > tol and n < nmax):
|
|
|
|
|
for j in range(50):
|
|
|
|
|
if err!=err0 and np.any(erri > tol):
|
|
|
|
|
if err != err0 and np.any(erri > tol):
|
|
|
|
|
err0 = err
|
|
|
|
|
# find top errors
|
|
|
|
|
|
|
|
|
|
I, = where(erri>tol)
|
|
|
|
|
I, = where(erri > tol)
|
|
|
|
|
# double the sample rate in intervals with the most error
|
|
|
|
|
y = (vstack(((x[I]+x[I-1])/2, (x[I+1]+x[I])/2)).T).ravel()
|
|
|
|
|
y = (vstack(((x[I] + x[I - 1]) / 2, (x[I + 1] + x[I]) / 2)).T).ravel()
|
|
|
|
|
fy = fun(y)
|
|
|
|
|
|
|
|
|
|
fy0 = interp(y, x, fx)
|
|
|
|
@ -1456,12 +1457,12 @@ def discretize2(fun, a,b,tol=0.005, n=5):
|
|
|
|
|
|
|
|
|
|
err = erri.max()
|
|
|
|
|
|
|
|
|
|
x = hstack((x,y))
|
|
|
|
|
x = hstack((x, y))
|
|
|
|
|
|
|
|
|
|
I = x.argsort()
|
|
|
|
|
x = x[I]
|
|
|
|
|
erri = hstack((zeros(len(fx)),erri))[I]
|
|
|
|
|
fx = hstack((fx,fy))[I]
|
|
|
|
|
erri = hstack((zeros(len(fx)), erri))[I]
|
|
|
|
|
fx = hstack((fx, fy))[I]
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
break
|
|
|
|
@ -1488,7 +1489,7 @@ def pol2cart(theta, rho, z=None):
|
|
|
|
|
if z is None:
|
|
|
|
|
return x, y
|
|
|
|
|
else:
|
|
|
|
|
return x,y,z
|
|
|
|
|
return x, y, z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cart2pol(x, y, z=None):
|
|
|
|
@ -1507,7 +1508,7 @@ def cart2pol(x, y, z=None):
|
|
|
|
|
'''
|
|
|
|
|
t, r = arctan2(y, x), hypot(x, y)
|
|
|
|
|
if z is None:
|
|
|
|
|
return t,r
|
|
|
|
|
return t, r
|
|
|
|
|
else:
|
|
|
|
|
return t, r, z
|
|
|
|
|
|
|
|
|
@ -1849,9 +1850,69 @@ def tranproc(x, f, x0, *xi):
|
|
|
|
|
warnings.warn('Transformation of derivatives of order>4 not supported.')
|
|
|
|
|
return y #y0,y1,y2,y3,y4
|
|
|
|
|
|
|
|
|
|
def histgrm(data, n=None, odd=False, scale=False, lintype='b-'):
|
|
|
|
|
'''HISTGRM Plot histogram
|
|
|
|
|
|
|
|
|
|
CALL: binwidth = histgrm(x,N,odd,scale)
|
|
|
|
|
binwidth = the width of each bin
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
-----------
|
|
|
|
|
x = the data
|
|
|
|
|
n = approximate number of bins wanted
|
|
|
|
|
(default depending on length(x))
|
|
|
|
|
odd = placement of bins (0 or 1) (default 0)
|
|
|
|
|
scale = argument for scaling (default 0)
|
|
|
|
|
scale = 1 yields the area 1 under the histogram
|
|
|
|
|
lintype : specify color and lintype, see PLOT for possibilities.
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
R=rndgumb(2,2,1,100);
|
|
|
|
|
histgrm(R,20,0,1)
|
|
|
|
|
hold on
|
|
|
|
|
x=linspace(-3,16,200);
|
|
|
|
|
plot(x,pdfgumb(x,2,2),'r')
|
|
|
|
|
hold off
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
x = np.atleast_1d(data)
|
|
|
|
|
if n is None:
|
|
|
|
|
n = np.ceil(4 * np.sqrt(np.sqrt(len(x))))
|
|
|
|
|
|
|
|
|
|
mn = x.min()
|
|
|
|
|
mx = x.max()
|
|
|
|
|
d = (mx - mn) / n * 2
|
|
|
|
|
e = np.floor(np.log(d) / np.log(10));
|
|
|
|
|
m = np.floor(d / 10 ** e)
|
|
|
|
|
if m > 5:
|
|
|
|
|
m = 5
|
|
|
|
|
elif m > 2:
|
|
|
|
|
m = 2
|
|
|
|
|
|
|
|
|
|
d = m * 10 ** e
|
|
|
|
|
mn = (np.floor(mn / d) - 1) * d - odd * d / 2
|
|
|
|
|
mx = (np.ceil(mx / d) + 1) * d + odd * d / 2
|
|
|
|
|
limits = np.arange(mn, mx, d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bin, limits = np.histogram(data, bins=limits, normed=scale) #, new=True)
|
|
|
|
|
limits.shape = (-1, 1)
|
|
|
|
|
xx = limits.repeat(3, axis=1)
|
|
|
|
|
xx.shape = (-1,)
|
|
|
|
|
xx = xx[1:-1]
|
|
|
|
|
bin.shape = (-1, 1)
|
|
|
|
|
yy = bin.repeat(3, axis=1)
|
|
|
|
|
#yy[0,0] = 0.0 # pdf
|
|
|
|
|
yy[:, 0] = 0.0 # histogram
|
|
|
|
|
yy.shape = (-1,)
|
|
|
|
|
yy = np.hstack((yy, 0.0))
|
|
|
|
|
plotbackend.plotbackend.plot(xx, yy, lintype, limits, limits * 0)
|
|
|
|
|
binwidth = d
|
|
|
|
|
return binwidth
|
|
|
|
|
|
|
|
|
|
def _test_find_cross():
|
|
|
|
|
t = findcross([0, 0, 1, -1, 1],0)
|
|
|
|
|
t = findcross([0, 0, 1, -1, 1], 0)
|
|
|
|
|
|
|
|
|
|
def _test_common_shape():
|
|
|
|
|
|
|
|
|
@ -1936,8 +1997,8 @@ def _test_discretize():
|
|
|
|
|
def _test_discretize2():
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pylab as plb
|
|
|
|
|
x,y = discretize2(np.cos,0,np.pi)
|
|
|
|
|
t = plb.plot(x,y)
|
|
|
|
|
x, y = discretize2(np.cos, 0, np.pi)
|
|
|
|
|
t = plb.plot(x, y)
|
|
|
|
|
plb.show()
|
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
|
|