|
|
@ -23,7 +23,7 @@ from scipy import optimize
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
from scipy.special import expm1, log1p
|
|
|
|
from scipy.special import expm1, log1p
|
|
|
|
from numpy import (alltrue, arange, zeros, log, sqrt, exp,
|
|
|
|
from numpy import (alltrue, arange, zeros, log, sqrt, exp,
|
|
|
|
atleast_1d, any, asarray, nan, pi, isfinite)
|
|
|
|
any, asarray, nan, pi, isfinite)
|
|
|
|
from numpy import flatnonzero as nonzero
|
|
|
|
from numpy import flatnonzero as nonzero
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -1577,7 +1577,7 @@ def test1():
|
|
|
|
# 80% CI for x
|
|
|
|
# 80% CI for x
|
|
|
|
Lx = ProfileQuantile(phat, x)
|
|
|
|
Lx = ProfileQuantile(phat, x)
|
|
|
|
Lx.plot()
|
|
|
|
Lx.plot()
|
|
|
|
x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
# x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(5)
|
|
|
|
plt.figure(5)
|
|
|
|
|
|
|
|
|
|
|
@ -1587,9 +1587,7 @@ def test1():
|
|
|
|
# 80% CI for x
|
|
|
|
# 80% CI for x
|
|
|
|
Lsf = ProfileProbability(phat, np.log(sf))
|
|
|
|
Lsf = ProfileProbability(phat, np.log(sf))
|
|
|
|
Lsf.plot()
|
|
|
|
Lsf.plot()
|
|
|
|
logsf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
# logsf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.show('hold')
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|