|
|
@ -31,7 +31,7 @@ import numpy as np
|
|
|
|
import numpy.random as mtrand
|
|
|
|
import numpy.random as mtrand
|
|
|
|
from numpy import flatnonzero as nonzero
|
|
|
|
from numpy import flatnonzero as nonzero
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_log1p = log1p
|
|
|
|
|
|
|
|
|
|
|
|
from wafo.stats.estimation import FitDistribution
|
|
|
|
from wafo.stats.estimation import FitDistribution
|
|
|
|
|
|
|
|
|
|
|
@ -88,6 +88,10 @@ except ImportError:
|
|
|
|
def instancemethod(func, obj, cls):
|
|
|
|
def instancemethod(func, obj, cls):
|
|
|
|
return types.MethodType(func, obj)
|
|
|
|
return types.MethodType(func, obj)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def log1p(x):
|
|
|
|
|
|
|
|
'''avoids warnings for x==-1'''
|
|
|
|
|
|
|
|
mx = where(x==-1, 0, x)
|
|
|
|
|
|
|
|
return where(x==-1, -inf, _log1p(mx))
|
|
|
|
|
|
|
|
|
|
|
|
# These are the docstring parts used for substitution in specific
|
|
|
|
# These are the docstring parts used for substitution in specific
|
|
|
|
# distribution docstrings.
|
|
|
|
# distribution docstrings.
|
|
|
@ -1073,18 +1077,20 @@ class rv_generic(object):
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
Location parameter, Default is 0.
|
|
|
|
scale : array_like, optional
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
Scale parameter, Default is 1.
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
median : float
|
|
|
|
median : float
|
|
|
|
the median of the distribution.
|
|
|
|
The median of the distribution.
|
|
|
|
|
|
|
|
|
|
|
|
See Also
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
--------
|
|
|
|
self.ppf --- inverse of the CDF
|
|
|
|
stats.distributions.rv_discrete.ppf
|
|
|
|
|
|
|
|
Inverse of the CDF
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
return self.ppf(0.5, *args, **kwds)
|
|
|
|
return self.ppf(0.5, *args, **kwds)
|
|
|
|
|
|
|
|
|
|
|
@ -1164,24 +1170,28 @@ class rv_generic(object):
|
|
|
|
return res
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def interval(self, alpha, *args, **kwds):
|
|
|
|
def interval(self, alpha, *args, **kwds):
|
|
|
|
"""Confidence interval with equal areas around the median
|
|
|
|
"""
|
|
|
|
|
|
|
|
Confidence interval with equal areas around the median.
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
----------
|
|
|
|
alpha : array_like float in [0,1]
|
|
|
|
alpha : array_like of float
|
|
|
|
Probability that an rv will be drawn from the returned range
|
|
|
|
Probability that an rv will be drawn from the returned range.
|
|
|
|
|
|
|
|
Each value should be in the range [0, 1].
|
|
|
|
arg1, arg2, ... : array_like
|
|
|
|
arg1, arg2, ... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the instance
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
object for more information)
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default = 0)
|
|
|
|
location parameter, Default is 0.
|
|
|
|
scale : array_like, optional
|
|
|
|
scale : array_like, optional
|
|
|
|
scale paramter (default = 1)
|
|
|
|
scale parameter, Default is 1.
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
a, b : array_like (float)
|
|
|
|
a, b : ndarray of float
|
|
|
|
end-points of range that contain alpha % of the rvs
|
|
|
|
end-points of range that contain ``100 * alpha %`` of the rv's possible
|
|
|
|
|
|
|
|
values.
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
alpha = asarray(alpha)
|
|
|
|
alpha = asarray(alpha)
|
|
|
|
if any((alpha > 1) | (alpha < 0)):
|
|
|
|
if any((alpha > 1) | (alpha < 0)):
|
|
|
@ -1393,7 +1403,6 @@ class rv_continuous(rv_generic):
|
|
|
|
Alternatively, you can override ``_munp``, which takes n and shape
|
|
|
|
Alternatively, you can override ``_munp``, which takes n and shape
|
|
|
|
parameters and returns the nth non-central moment of the distribution.
|
|
|
|
parameters and returns the nth non-central moment of the distribution.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
--------
|
|
|
|
To create a new Gaussian distribution, we would do the following::
|
|
|
|
To create a new Gaussian distribution, we would do the following::
|
|
|
@ -1728,7 +1737,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
def cdf(self,x,*args,**kwds):
|
|
|
|
def cdf(self,x,*args,**kwds):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Cumulative distribution function at x of the given RV.
|
|
|
|
Cumulative distribution function of the given RV.
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
----------
|
|
|
@ -1744,8 +1753,8 @@ class rv_continuous(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
cdf : array_like
|
|
|
|
cdf : ndarray
|
|
|
|
Cumulative distribution function evaluated at x
|
|
|
|
Cumulative distribution function evaluated at `x`
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
loc,scale=map(kwds.get,['loc','scale'])
|
|
|
|
loc,scale=map(kwds.get,['loc','scale'])
|
|
|
@ -1967,8 +1976,8 @@ class rv_continuous(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
x : array_like
|
|
|
|
x : ndarray or scalar
|
|
|
|
quantile corresponding to the upper tail probability q.
|
|
|
|
Quantile corresponding to the upper tail probability q.
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
loc,scale=map(kwds.get,['loc','scale'])
|
|
|
|
loc,scale=map(kwds.get,['loc','scale'])
|
|
|
@ -1997,7 +2006,6 @@ class rv_continuous(rv_generic):
|
|
|
|
if product(shape(proxy_value)) != 1:
|
|
|
|
if product(shape(proxy_value)) != 1:
|
|
|
|
proxy_value = extract(cond2, proxy_value * cond2)
|
|
|
|
proxy_value = extract(cond2, proxy_value * cond2)
|
|
|
|
place(output, cond2, proxy_value)
|
|
|
|
place(output, cond2, proxy_value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if any(cond): #call only if at least 1 entry
|
|
|
|
if any(cond): #call only if at least 1 entry
|
|
|
|
goodargs = argsreduce(cond, *((q,)+args+(scale,loc))) #PB replace 1-q by q
|
|
|
|
goodargs = argsreduce(cond, *((q,)+args+(scale,loc))) #PB replace 1-q by q
|
|
|
@ -2597,6 +2605,7 @@ class rv_continuous(rv_generic):
|
|
|
|
Estimated location parameter for the data.
|
|
|
|
Estimated location parameter for the data.
|
|
|
|
Shat : float
|
|
|
|
Shat : float
|
|
|
|
Estimated scale parameter for the data.
|
|
|
|
Estimated scale parameter for the data.
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
mu, mu2 = self.stats(*args,**{'moments':'mv'})
|
|
|
|
mu, mu2 = self.stats(*args,**{'moments':'mv'})
|
|
|
|
tmp = asarray(data)
|
|
|
|
tmp = asarray(data)
|
|
|
@ -7057,7 +7066,7 @@ class rv_discrete(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
def cdf(self, k, *args, **kwds):
|
|
|
|
def cdf(self, k, *args, **kwds):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Cumulative distribution function at k of the given RV.
|
|
|
|
Cumulative distribution function of the given RV.
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
----------
|
|
|
@ -7071,8 +7080,8 @@ class rv_discrete(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
cdf : array_like
|
|
|
|
cdf : ndarray
|
|
|
|
Cumulative distribution function evaluated at k.
|
|
|
|
Cumulative distribution function evaluated at `k`.
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
loc = kwds.get('loc')
|
|
|
|
loc = kwds.get('loc')
|
|
|
@ -7177,7 +7186,10 @@ class rv_discrete(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
def logsf(self,k,*args,**kwds):
|
|
|
|
def logsf(self,k,*args,**kwds):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Log of the survival function (1-cdf) at k of the given RV
|
|
|
|
Log of the survival function of the given RV.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns the log of the "survival function," defined as ``1 - cdf``,
|
|
|
|
|
|
|
|
evaluated at `k`.
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
----------
|
|
|
@ -7191,8 +7203,8 @@ class rv_discrete(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
sf : array_like
|
|
|
|
sf : ndarray
|
|
|
|
Survival function evaluated at k.
|
|
|
|
Survival function evaluated at `k`.
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
loc= kwds.get('loc')
|
|
|
|
loc= kwds.get('loc')
|
|
|
@ -7274,11 +7286,10 @@ class rv_discrete(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
k : array_like
|
|
|
|
k : ndarray or scalar
|
|
|
|
Quantile corresponding to the upper tail probability, q.
|
|
|
|
Quantile corresponding to the upper tail probability, q.
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
loc = kwds.get('loc')
|
|
|
|
loc = kwds.get('loc')
|
|
|
|
args, loc = self.fix_loc(args, loc)
|
|
|
|
args, loc = self.fix_loc(args, loc)
|
|
|
|
q,loc = map(asarray,(q,loc))
|
|
|
|
q,loc = map(asarray,(q,loc))
|
|
|
@ -7435,7 +7446,7 @@ class rv_discrete(rv_generic):
|
|
|
|
----------
|
|
|
|
----------
|
|
|
|
n : int, n>=1
|
|
|
|
n : int, n>=1
|
|
|
|
order of moment
|
|
|
|
order of moment
|
|
|
|
arg1, arg2, arg3,...: float
|
|
|
|
arg1, arg2, arg3,... : float
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
instance object for more information)
|
|
|
|
loc : float, optional
|
|
|
|
loc : float, optional
|
|
|
@ -7514,7 +7525,8 @@ class rv_discrete(rv_generic):
|
|
|
|
return self.freeze(*args,**kwds)
|
|
|
|
return self.freeze(*args,**kwds)
|
|
|
|
|
|
|
|
|
|
|
|
def expect(self, func=None, args=(), loc=0, lb=None, ub=None, conditional=False):
|
|
|
|
def expect(self, func=None, args=(), loc=0, lb=None, ub=None, conditional=False):
|
|
|
|
"""calculate expected value of a function with respect to the distribution
|
|
|
|
"""
|
|
|
|
|
|
|
|
Calculate expected value of a function with respect to the distribution
|
|
|
|
for discrete distribution
|
|
|
|
for discrete distribution
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
Parameters
|
|
|
@ -7523,11 +7535,11 @@ class rv_discrete(rv_generic):
|
|
|
|
Function for which sum is calculated. Takes only one argument.
|
|
|
|
Function for which sum is calculated. Takes only one argument.
|
|
|
|
args : tuple
|
|
|
|
args : tuple
|
|
|
|
argument (parameters) of the distribution
|
|
|
|
argument (parameters) of the distribution
|
|
|
|
optional keyword parameters
|
|
|
|
lb, ub : numbers, optional
|
|
|
|
lb, ub : numbers
|
|
|
|
|
|
|
|
lower and upper bound for integration, default is set to the support
|
|
|
|
lower and upper bound for integration, default is set to the support
|
|
|
|
of the distribution, lb and ub are inclusive (ul<=k<=ub)
|
|
|
|
of the distribution, lb and ub are inclusive (ul<=k<=ub)
|
|
|
|
conditional : boolean (False)
|
|
|
|
conditional : bool, optional
|
|
|
|
|
|
|
|
Default is False.
|
|
|
|
If true then the expectation is corrected by the conditional
|
|
|
|
If true then the expectation is corrected by the conditional
|
|
|
|
probability of the integration interval. The return value is the
|
|
|
|
probability of the integration interval. The return value is the
|
|
|
|
expectation of the function, conditional on being in the given
|
|
|
|
expectation of the function, conditional on being in the given
|
|
|
@ -7535,7 +7547,8 @@ class rv_discrete(rv_generic):
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
expected value : float
|
|
|
|
expect : float
|
|
|
|
|
|
|
|
Expected value.
|
|
|
|
|
|
|
|
|
|
|
|
Notes
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
-----
|
|
|
@ -7549,8 +7562,8 @@ class rv_discrete(rv_generic):
|
|
|
|
non-monotonic shapes, points include integers in (-suppnmin, suppnmin)
|
|
|
|
non-monotonic shapes, points include integers in (-suppnmin, suppnmin)
|
|
|
|
* uses maxcount=1000 limits the number of points that are evaluated
|
|
|
|
* uses maxcount=1000 limits the number of points that are evaluated
|
|
|
|
to break loop for infinite sums
|
|
|
|
to break loop for infinite sums
|
|
|
|
(a maximum of suppnmin+1000 positive plus suppnmin+1000 negative integers
|
|
|
|
(a maximum of suppnmin+1000 positive plus suppnmin+1000 negative
|
|
|
|
are evaluated)
|
|
|
|
integers are evaluated)
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
@ -7658,9 +7671,12 @@ class binom_gen(rv_discrete):
|
|
|
|
"Fast and Accurate Computation of Binomial Probabilities";
|
|
|
|
"Fast and Accurate Computation of Binomial Probabilities";
|
|
|
|
url = "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.2719" }
|
|
|
|
url = "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.2719" }
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
logp = where((p==0) & (x==0), 1, log(p))
|
|
|
|
|
|
|
|
log1mp = where((p==1) & (x==n), 1, log1p(-p))
|
|
|
|
|
|
|
|
|
|
|
|
PI2 = 2.0 * pi
|
|
|
|
PI2 = 2.0 * pi
|
|
|
|
|
|
|
|
|
|
|
|
yborder = log((x == 0.) * exp(n * log1p(-p)) + (x == n) * exp(n * log(p)))
|
|
|
|
yborder = log((x == 0.) * exp(n * log1mp) + (x == n) * exp(n * logp))
|
|
|
|
nx = n - x
|
|
|
|
nx = n - x
|
|
|
|
nq = n * (1. - p)
|
|
|
|
nq = n * (1. - p)
|
|
|
|
lc = stirlerr(n) - stirlerr(x) - stirlerr(nx) - bd0(x, n * p) - bd0(nx, nq)
|
|
|
|
lc = stirlerr(n) - stirlerr(x) - stirlerr(nx) - bd0(x, n * p) - bd0(nx, nq)
|
|
|
@ -7669,7 +7685,6 @@ class binom_gen(rv_discrete):
|
|
|
|
return where(inside, lc + 0.5 * log(n / (PI2 * xnx)), yborder)
|
|
|
|
return where(inside, lc + 0.5 * log(n / (PI2 * xnx)), yborder)
|
|
|
|
def _pmf(self, x, n, p):
|
|
|
|
def _pmf(self, x, n, p):
|
|
|
|
return exp(self._logpmf(x, n, p))
|
|
|
|
return exp(self._logpmf(x, n, p))
|
|
|
|
|
|
|
|
|
|
|
|
def _cdf(self, x, n, p):
|
|
|
|
def _cdf(self, x, n, p):
|
|
|
|
k = floor(x)
|
|
|
|
k = floor(x)
|
|
|
|
vals = special.bdtr(k,n,p)
|
|
|
|
vals = special.bdtr(k,n,p)
|
|
|
@ -8457,7 +8472,17 @@ def test_genpareto():
|
|
|
|
print(phat.par)
|
|
|
|
print(phat.par)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if __name__ == '__main__':
|
|
|
|
bernoulli.logcdf(np.nan)
|
|
|
|
import matplotlib
|
|
|
|
|
|
|
|
matplotlib.use()
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prb = np.linspace(0,1, 10)
|
|
|
|
|
|
|
|
q = truncnorm.isf(prb,-1., 1., loc=[3],scale=2)
|
|
|
|
|
|
|
|
plt.plot(q, prb)
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
p = truncnorm.sf(q,-1,1, loc=[3],scale=2)
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
#bernoulli.logcdf(np.nan)
|
|
|
|
#test_binom()
|
|
|
|
#test_binom()
|
|
|
|
#test_doctstrings()
|
|
|
|
#test_doctstrings()
|
|
|
|
#test_genpareto()
|
|
|
|
#test_genpareto()
|
|
|
|