|
|
|
#!/usr/bin/env python
|
|
|
|
"""
|
|
|
|
Models module
|
|
|
|
-------------
|
|
|
|
|
|
|
|
Dispersion relation
|
|
|
|
-------------------
|
|
|
|
k2w - Translates from wave number to frequency
|
|
|
|
w2k - Translates from frequency to wave number
|
|
|
|
|
|
|
|
Model spectra
|
|
|
|
-------------
|
|
|
|
Bretschneider - Bretschneider spectral density.
|
|
|
|
Jonswap - JONSWAP spectral density
|
|
|
|
McCormick - McCormick spectral density.
|
|
|
|
OchiHubble - OchiHubble bimodal spectral density model.
|
|
|
|
Tmaspec - JONSWAP spectral density for finite water depth
|
|
|
|
Torsethaugen - Torsethaugen double peaked (swell + wind) spectrum model
|
|
|
|
Wallop - Wallop spectral density.
|
|
|
|
demospec - Loads a precreated spectrum of chosen type
|
|
|
|
jonswap_peakfact - Jonswap peakedness factor Gamma given Hm0 and Tp
|
|
|
|
jonswap_seastate - jonswap seastate from windspeed and fetch
|
|
|
|
|
|
|
|
Directional spreading functions
|
|
|
|
-------------------------------
|
|
|
|
Spreading - Directional spreading function.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
from __future__ import absolute_import, division
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
from scipy.interpolate import interp1d
|
|
|
|
import scipy.optimize as optimize
|
|
|
|
import scipy.integrate as integrate
|
|
|
|
import scipy.special as sp
|
|
|
|
from scipy.fftpack import fft
|
|
|
|
import numpy as np
|
|
|
|
from numpy import (inf, atleast_1d, newaxis, any, minimum, maximum, array,
|
|
|
|
asarray, exp, log, sqrt, where, pi, arange, linspace, sin,
|
|
|
|
cos, abs, sinh, isfinite, mod, expm1, tanh, cosh, finfo,
|
|
|
|
ones, ones_like, isnan, zeros_like, flatnonzero, sinc,
|
|
|
|
hstack, vstack, real, flipud, clip)
|
|
|
|
from ..wave_theory.dispersion_relation import w2k, k2w # @UnusedImport
|
|
|
|
from .core import SpecData1D, SpecData2D
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['Bretschneider', 'Jonswap', 'Torsethaugen', 'Wallop', 'McCormick',
|
|
|
|
'OchiHubble', 'Tmaspec', 'jonswap_peakfact', 'jonswap_seastate',
|
|
|
|
'Spreading', 'w2k', 'k2w', 'phi1']
|
|
|
|
|
|
|
|
_EPS = finfo(float).eps
|
|
|
|
|
|
|
|
|
|
|
|
def sech(x):
|
|
|
|
return 1.0 / cosh(x)
|
|
|
|
|
|
|
|
|
|
|
|
def _gengamspec(wn, N=5, M=4):
|
|
|
|
""" Return Generalized gamma spectrum in dimensionless form
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
wn : arraylike
|
|
|
|
normalized frequencies, w/wp.
|
|
|
|
N : scalar
|
|
|
|
defining the decay of the high frequency part.
|
|
|
|
M : scalar
|
|
|
|
defining the spectral width around the peak.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
S : arraylike
|
|
|
|
spectral values, same size as wn.
|
|
|
|
|
|
|
|
The generalized gamma spectrum in non-
|
|
|
|
dimensional form is defined as:
|
|
|
|
|
|
|
|
S = G0.*wn.**(-N).*exp(-B*wn.**(-M)) for wn > 0
|
|
|
|
= 0 otherwise
|
|
|
|
where
|
|
|
|
B = N/M
|
|
|
|
C = (N-1)/M
|
|
|
|
G0 = B**C*M/gamma(C), Normalizing factor related to Bretschneider form
|
|
|
|
|
|
|
|
Note that N = 5, M = 4 corresponds to a normalized
|
|
|
|
Bretschneider spectrum.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> wn = np.linspace(0,4,5)
|
|
|
|
>>> wsm._gengamspec(wn, N=6, M=2)
|
|
|
|
array([ 0. , 1.16765216, 0.17309961, 0.02305179, 0.00474686])
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Bretschneider
|
|
|
|
Jonswap,
|
|
|
|
Torsethaugen
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
Torsethaugen, K. (2004)
|
|
|
|
"Simplified Double Peak Spectral Model for Ocean Waves"
|
|
|
|
In Proc. 14th ISOPE
|
|
|
|
"""
|
|
|
|
w = atleast_1d(wn)
|
|
|
|
S = zeros_like(w)
|
|
|
|
|
|
|
|
k = flatnonzero(w > 0.0)
|
|
|
|
if k.size > 0:
|
|
|
|
B = N / M
|
|
|
|
C = (N - 1.0) / M
|
|
|
|
|
|
|
|
# A = Normalizing factor related to Bretschneider form
|
|
|
|
# A = B**C*M/gamma(C)
|
|
|
|
# S[k] = A*wn[k]**(-N)*exp(-B*wn[k]**(-M))
|
|
|
|
logwn = log(w.take(k))
|
|
|
|
logA = (C * log(B) + log(M) - sp.gammaln(C))
|
|
|
|
S.put(k, exp(logA - N * logwn - B * exp(-M * logwn)))
|
|
|
|
return S
|
|
|
|
|
|
|
|
|
|
|
|
class ModelSpectrum(object):
|
|
|
|
type = 'ModelSpectrum'
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7.0, Tp=11.0, **kwds):
|
|
|
|
self.Hm0 = Hm0
|
|
|
|
self.Tp = Tp
|
|
|
|
|
|
|
|
def tospecdata(self, w=None, wc=None, nw=257):
|
|
|
|
"""
|
|
|
|
Return SpecData1D object from ModelSpectrum
|
|
|
|
|
|
|
|
Parameter
|
|
|
|
---------
|
|
|
|
w : arraylike
|
|
|
|
vector of angular frequencies used in discretization of spectrum
|
|
|
|
wc : scalar
|
|
|
|
cut off frequency (default 33/Tp)
|
|
|
|
nw : int
|
|
|
|
number of frequencies
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
S : SpecData1D object
|
|
|
|
member attributes of model spectrum are copied to S.workspace
|
|
|
|
"""
|
|
|
|
|
|
|
|
if w is None:
|
|
|
|
if wc is None:
|
|
|
|
wc = 33. / self.Tp
|
|
|
|
w = linspace(0, wc, nw)
|
|
|
|
S = SpecData1D(self.__call__(w), w)
|
|
|
|
try:
|
|
|
|
S.h = self.h
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
S.labels.title = self.type + ' ' + S.labels.title
|
|
|
|
S.workspace = self.__dict__.copy()
|
|
|
|
return S
|
|
|
|
|
|
|
|
def chk_seastate(self):
|
|
|
|
""" Check if seastate is valid
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.Hm0 < 0:
|
|
|
|
raise ValueError('Hm0 can not be negative!')
|
|
|
|
|
|
|
|
if self.Tp <= 0:
|
|
|
|
raise ValueError('Tp must be positve!')
|
|
|
|
|
|
|
|
if self.Hm0 == 0.0:
|
|
|
|
warnings.warn('Hm0 is zero!')
|
|
|
|
|
|
|
|
self._chk_extra_param()
|
|
|
|
|
|
|
|
def _chk_extra_param(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class Bretschneider(ModelSpectrum):
|
|
|
|
|
|
|
|
"""
|
|
|
|
Bretschneider spectral density model
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
Hm0 : significant wave height (default 7 (m))
|
|
|
|
Tp : peak period (default 11 (sec))
|
|
|
|
N : scalar defining decay of high frequency part. (default 5)
|
|
|
|
M : scalar defining spectral width around the peak. (default 4)
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
w : array-like
|
|
|
|
angular frequencies [rad/s]
|
|
|
|
|
|
|
|
|
|
|
|
The Bretschneider spectrum is defined as
|
|
|
|
|
|
|
|
S(w) = A * G0 * wn**(-N)*exp(-N/(M*wn**M))
|
|
|
|
where
|
|
|
|
G0 = Normalizing factor related to Bretschneider form
|
|
|
|
A = (Hm0/4)**2 / wp (Normalization factor)
|
|
|
|
wn = w/wp
|
|
|
|
wp = 2*pi/Tp, angular peak frequency
|
|
|
|
|
|
|
|
This spectrum is a suitable model for fully developed sea,
|
|
|
|
i.e. a sea state where the wind has been blowing long enough over a
|
|
|
|
sufficiently open stretch of water, so that the high-frequency waves have
|
|
|
|
reached an equilibrium. In the part of the spectrum where the frequency is
|
|
|
|
greater than the peak frequency (w>wp), the energy distribution is
|
|
|
|
proportional to w**-5.
|
|
|
|
The spectrum is identical with ITTC (International Towing Tank
|
|
|
|
Conference), ISSC (International Ship and Offshore Structures Congress)
|
|
|
|
and Pierson-Moskowitz, wave spectrum given Hm0 and Tm01. It is also
|
|
|
|
identical with JONSWAP when the peakedness factor, gamma, is one.
|
|
|
|
For this spectrum, the following relations exist between the mean
|
|
|
|
period Tm01 = 2*pi*m0/m1, the peak period Tp and the mean
|
|
|
|
zero-upcrossing period Tz:
|
|
|
|
|
|
|
|
Tm01 = 1.086*Tz, Tp = 1.408*Tz and Tp=1.2965*Tm01
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> S = wsm.Bretschneider(Hm0=6.5,Tp=10)
|
|
|
|
>>> S((0,1,2,3))
|
|
|
|
array([ 0. , 1.69350993, 0.06352698, 0.00844783])
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Jonswap,
|
|
|
|
Torsethaugen
|
|
|
|
"""
|
|
|
|
|
|
|
|
type = 'Bretschneider'
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7.0, Tp=11.0, N=5, M=4, chk_seastate=True, **kwds):
|
|
|
|
super(Bretschneider, self).__init__(Hm0, Tp)
|
|
|
|
self.N = N
|
|
|
|
self.M = M
|
|
|
|
|
|
|
|
if chk_seastate:
|
|
|
|
self.chk_seastate()
|
|
|
|
|
|
|
|
def __call__(self, wi):
|
|
|
|
""" Return Bretschnieder spectrum
|
|
|
|
"""
|
|
|
|
w = atleast_1d(wi)
|
|
|
|
if self.Hm0 > 0:
|
|
|
|
wp = 2 * pi / self.Tp
|
|
|
|
wn = w / wp
|
|
|
|
S = (self.Hm0 / 4.0) ** 2 / wp * _gengamspec(wn, self.N, self.M)
|
|
|
|
else:
|
|
|
|
S = zeros_like(w)
|
|
|
|
return S
|
|
|
|
|
|
|
|
|
|
|
|
def jonswap_peakfact(Hm0, Tp):
|
|
|
|
""" Jonswap peakedness factor, gamma, given Hm0 and Tp
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
Hm0 : significant wave height [m].
|
|
|
|
Tp : peak period [s]
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
gamma : Peakedness parameter of the JONSWAP spectrum
|
|
|
|
|
|
|
|
Details
|
|
|
|
-------
|
|
|
|
A standard value for GAMMA is 3.3. However, a more correct approach is
|
|
|
|
to relate GAMMA to Hm0 and Tp:
|
|
|
|
D = 0.036-0.0056*Tp/sqrt(Hm0)
|
|
|
|
gamma = exp(3.484*(1-0.1975*D*Tp**4/(Hm0**2)))
|
|
|
|
This parameterization is based on qualitative considerations of deep water
|
|
|
|
wave data from the North Sea, see Torsethaugen et. al. (1984)
|
|
|
|
Here GAMMA is limited to 1..7.
|
|
|
|
|
|
|
|
NOTE: The size of GAMMA is the common shape of Hm0 and Tp.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> import pylab as plb
|
|
|
|
>>> Tp,Hs = plb.meshgrid(range(4,8),range(2,6))
|
|
|
|
>>> gam = wsm.jonswap_peakfact(Hs,Tp)
|
|
|
|
|
|
|
|
>>> Hm0 = plb.linspace(1,20)
|
|
|
|
>>> Tp = Hm0
|
|
|
|
>>> [T,H] = plb.meshgrid(Tp,Hm0)
|
|
|
|
>>> gam = wsm.jonswap_peakfact(H,T)
|
|
|
|
>>> v = plb.arange(0,8)
|
|
|
|
|
|
|
|
>>> Hm0 = plb.arange(1,11)
|
|
|
|
>>> Tp = plb.linspace(2,16)
|
|
|
|
>>> T,H = plb.meshgrid(Tp,Hm0)
|
|
|
|
>>> gam = wsm.jonswap_peakfact(H,T)
|
|
|
|
|
|
|
|
h = plb.contourf(Tp,Hm0,gam,v);h=plb.colorbar()
|
|
|
|
h = plb.plot(Tp,gam.T)
|
|
|
|
h = plb.xlabel('Tp [s]')
|
|
|
|
h = plb.ylabel('Peakedness parameter')
|
|
|
|
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
jonswap
|
|
|
|
"""
|
|
|
|
Hm0, Tp = atleast_1d(Hm0, Tp)
|
|
|
|
|
|
|
|
x = Tp / sqrt(Hm0)
|
|
|
|
|
|
|
|
gam = ones_like(x)
|
|
|
|
|
|
|
|
k1 = flatnonzero(x <= 5.14285714285714)
|
|
|
|
if k1.size > 0: # limiting gamma to [1 7]
|
|
|
|
xk = x.take(k1)
|
|
|
|
D = 0.036 - 0.0056 * xk # approx 5.061*Hm0**2/Tp**4*(1-0.287*log(gam))
|
|
|
|
# gamma
|
|
|
|
gam.put(k1, minimum(exp(3.484 * (1.0 - 0.1975 * D * xk ** 4.0)), 7.0))
|
|
|
|
|
|
|
|
return gam
|
|
|
|
|
|
|
|
|
|
|
|
def jonswap_seastate(u10, fetch=150000., method='lewis', g=9.81,
|
|
|
|
output='dict'):
|
|
|
|
"""
|
|
|
|
Return Jonswap seastate from windspeed and fetch
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
U10 : real scalar
|
|
|
|
windspeed at 10 m above mean water surface [m/s]
|
|
|
|
fetch : real scalar
|
|
|
|
fetch [m]
|
|
|
|
method : 'hasselman73' seastate according to Hasselman et. al. 1973
|
|
|
|
'hasselman76' seastate according to Hasselman et. al. 1976
|
|
|
|
'lewis' seastate according to Lewis and Allos 1990
|
|
|
|
g : real scalar
|
|
|
|
accelaration of gravity [m/s**2]
|
|
|
|
output : 'dict' or 'list'
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
seastate: dict where
|
|
|
|
Hm0 : significant wave height [m]
|
|
|
|
Tp : peak period [s]
|
|
|
|
gamma : jonswap peak enhancement factor.
|
|
|
|
sigmaA,
|
|
|
|
sigmaB : jonswap spectral width parameters.
|
|
|
|
Ag : jonswap alpha, normalization factor.
|
|
|
|
|
|
|
|
Example
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> fetch = 10000; u10 = 10
|
|
|
|
>>> ss = wsm.jonswap_seastate(u10, fetch, output='dict')
|
|
|
|
>>> for key in sorted(ss.keys()): key, ss[key]
|
|
|
|
('Ag', 0.016257903375341734)
|
|
|
|
('Hm0', 0.51083679198275533)
|
|
|
|
('Tp', 2.7727680999585265)
|
|
|
|
('gamma', 2.4824142635861119)
|
|
|
|
('sigmaA', 0.07531733139517202)
|
|
|
|
('sigmaB', 0.09191208451225134)
|
|
|
|
>>> S = wsm.Jonswap(**ss)
|
|
|
|
>>> S.Hm0
|
|
|
|
0.51083679198275533
|
|
|
|
|
|
|
|
# Alternatively
|
|
|
|
>>> ss1 = wsm.jonswap_seastate(u10, fetch, output='list')
|
|
|
|
>>> S1 = wsm.Jonswap(*ss1)
|
|
|
|
>>> S1.Hm0
|
|
|
|
0.51083679198275533
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Jonswap
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
Lewis, A. W. and Allos, R.N. (1990)
|
|
|
|
JONSWAP's parameters: sorting out the inconscistencies.
|
|
|
|
Ocean Engng, Vol 17, No 4, pp 409-415
|
|
|
|
|
|
|
|
Hasselmann et al. (1973)
|
|
|
|
Measurements of Wind-Wave Growth and Swell Decay during the Joint
|
|
|
|
North Sea Project (JONSWAP).
|
|
|
|
Ergansungsheft, Reihe A(8), Nr. 12, Deutschen Hydrografischen Zeitschrift.
|
|
|
|
|
|
|
|
Hasselmann et al. (1976)
|
|
|
|
A parametric wave prediction model.
|
|
|
|
J. phys. oceanogr. Vol 6, pp 200-228
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# The following formulas are from Lewis and Allos 1990:
|
|
|
|
zeta = g * fetch / (u10 ** 2) # dimensionless fetch, Table 1
|
|
|
|
# zeta = min(zeta, 2.414655013429281e+004)
|
|
|
|
if method.startswith('h'):
|
|
|
|
if method[-1] == '3': # Hasselman et.al (1973)
|
|
|
|
A = 0.076 * zeta ** (-0.22)
|
|
|
|
# dimensionless peakfrequency, Table 1
|
|
|
|
ny = 3.5 * zeta ** (-0.33)
|
|
|
|
# dimensionless surface variance, Table 1
|
|
|
|
epsilon1 = 9.91e-8 * zeta ** 1.1
|
|
|
|
else: # Hasselman et.al (1976)
|
|
|
|
A = 0.0662 * zeta ** (-0.2)
|
|
|
|
ny = 2.84 * zeta ** (-0.3) # dimensionless peakfrequency, Table 1
|
|
|
|
# dimensionless surface variance, Eq.4
|
|
|
|
epsilon1 = 1.6e-7 * zeta
|
|
|
|
|
|
|
|
sa = 0.07
|
|
|
|
sb = 0.09
|
|
|
|
gam = 3.3
|
|
|
|
else:
|
|
|
|
A = 0.074 * zeta ** (-0.22) # Eq. 10
|
|
|
|
ny = 3.57 * zeta ** (-0.33) # dimensionless peakfrequency, Eq. 11
|
|
|
|
# dimensionless surface variance, Eq.12
|
|
|
|
epsilon1 = 3.512e-4 * A * ny ** (-4.) * zeta ** (-0.1)
|
|
|
|
sa = 0.05468 * ny ** (-0.32) # Eq. 13
|
|
|
|
sb = 0.078314 * ny ** (-0.16) # Eq. 14
|
|
|
|
gam = maximum(17.54 * zeta ** (-0.28384), 1) # Eq. 15
|
|
|
|
|
|
|
|
Tp = u10 / (ny * g) # Table 1
|
|
|
|
Hm0 = 4 * sqrt(epsilon1) * u10 ** 2. / g # Table 1
|
|
|
|
if output[0] == 'l':
|
|
|
|
return Hm0, Tp, gam, sa, sb, A
|
|
|
|
else:
|
|
|
|
return dict(Hm0=Hm0, Tp=Tp, gamma=gam, sigmaA=sa, sigmaB=sb, Ag=A)
|
|
|
|
|
|
|
|
|
|
|
|
class Jonswap(ModelSpectrum):
|
|
|
|
|
|
|
|
"""
|
|
|
|
Jonswap spectral density model
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
Hm0 : significant wave height (default 7 (m))
|
|
|
|
Tp : peak period (default 11 (sec))
|
|
|
|
gamma : peakedness factor determines the concentraton
|
|
|
|
of the spectrum on the peak frequency.
|
|
|
|
Usually in the range 1 <= gamma <= 7.
|
|
|
|
default depending on Hm0, Tp, see jonswap_peakedness)
|
|
|
|
sigmaA : spectral width parameter for w<wp (default 0.07)
|
|
|
|
sigmaB : spectral width parameter for w<wp (default 0.09)
|
|
|
|
Ag : normalization factor used when gamma>1:
|
|
|
|
N : scalar defining decay of high frequency part. (default 5)
|
|
|
|
M : scalar defining spectral width around the peak. (default 4)
|
|
|
|
method : String defining method used to estimate Ag when gamma>1
|
|
|
|
'integration': Ag = 1/gaussq(Gf*ggamspec(wn,N,M),0,wnc) (default)
|
|
|
|
'parametric' : Ag = (1+f1(N,M)*log(gamma)**f2(N,M))/gamma
|
|
|
|
'custom' : Ag = Ag
|
|
|
|
wnc : wc/wp normalized cut off frequency used when calculating Ag
|
|
|
|
by integration (default 6)
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
w : array-like
|
|
|
|
angular frequencies [rad/s]
|
|
|
|
|
|
|
|
Description
|
|
|
|
-----------
|
|
|
|
The JONSWAP spectrum is defined as
|
|
|
|
|
|
|
|
S(w) = A * Gf * G0 * wn**(-N)*exp(-N/(M*wn**M))
|
|
|
|
where
|
|
|
|
G0 = Normalizing factor related to Bretschneider form
|
|
|
|
A = Ag * (Hm0/4)**2 / wp (Normalization factor)
|
|
|
|
Gf = j**exp(-.5*((wn-1)/s)**2) (Peak enhancement factor)
|
|
|
|
wn = w/wp
|
|
|
|
wp = angular peak frequency
|
|
|
|
s = sigmaA for wn <= 1
|
|
|
|
sigmaB for 1 < wn
|
|
|
|
j = gamma, (j=1, => Bretschneider spectrum)
|
|
|
|
|
|
|
|
The JONSWAP spectrum is assumed to be especially suitable for the North
|
|
|
|
Sea, and does not represent a fully developed sea. It is a reasonable model
|
|
|
|
for wind generated sea when the seastate is in the so called JONSWAP range,
|
|
|
|
i.e., 3.6*sqrt(Hm0) < Tp < 5*sqrt(Hm0)
|
|
|
|
|
|
|
|
The relation between the peak period and mean zero-upcrossing period
|
|
|
|
may be approximated by
|
|
|
|
Tz = Tp/(1.30301-0.01698*gamma+0.12102/gamma)
|
|
|
|
|
|
|
|
Examples
|
|
|
|
---------
|
|
|
|
>>> import pylab as plb
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> S = wsm.Jonswap(Hm0=7, Tp=11,gamma=1)
|
|
|
|
>>> S2 = wsm.Bretschneider(Hm0=7, Tp=11)
|
|
|
|
>>> w = plb.linspace(0,5)
|
|
|
|
>>> all(abs(S(w)-S2(w))<1.e-7)
|
|
|
|
True
|
|
|
|
|
|
|
|
h = plb.plot(w,S(w))
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Bretschneider
|
|
|
|
Tmaspec
|
|
|
|
Torsethaugen
|
|
|
|
|
|
|
|
References
|
|
|
|
-----------
|
|
|
|
Torsethaugen et al. (1984)
|
|
|
|
Characteristica for extreme Sea States on the Norwegian continental shelf.
|
|
|
|
Report No. STF60 A84123. Norwegian Hydrodyn. Lab., Trondheim
|
|
|
|
|
|
|
|
Hasselmann et al. (1973)
|
|
|
|
Measurements of Wind-Wave Growth and Swell Decay during the Joint
|
|
|
|
North Sea Project (JONSWAP).
|
|
|
|
Ergansungsheft, Reihe A(8), Nr. 12, Deutschen Hydrografischen Zeitschrift.
|
|
|
|
"""
|
|
|
|
|
|
|
|
type = 'Jonswap'
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7.0, Tp=11.0, gamma=None, sigmaA=0.07, sigmaB=0.09,
|
|
|
|
Ag=None, N=5, M=4, method='integration', wnc=6.0,
|
|
|
|
chk_seastate=True):
|
|
|
|
super(Jonswap, self).__init__(Hm0, Tp)
|
|
|
|
self.N = N
|
|
|
|
self.M = M
|
|
|
|
self.sigmaA = sigmaA
|
|
|
|
self.sigmaB = sigmaB
|
|
|
|
self.gamma = gamma
|
|
|
|
self.Ag = Ag
|
|
|
|
self.method = method
|
|
|
|
self.wnc = wnc
|
|
|
|
|
|
|
|
if self.gamma is None or not isfinite(self.gamma) or self.gamma < 1:
|
|
|
|
self.gamma = jonswap_peakfact(Hm0, Tp)
|
|
|
|
|
|
|
|
self._pre_calculate_ag()
|
|
|
|
|
|
|
|
if chk_seastate:
|
|
|
|
self.chk_seastate()
|
|
|
|
|
|
|
|
def _chk_extra_param(self):
|
|
|
|
Tp = self.Tp
|
|
|
|
Hm0 = self.Hm0
|
|
|
|
gam = self.gamma
|
|
|
|
outsideJonswapRange = Tp > 5 * sqrt(Hm0) or Tp < 3.6 * sqrt(Hm0)
|
|
|
|
if outsideJonswapRange:
|
|
|
|
txt0 = """
|
|
|
|
Hm0=%g,Tp=%g is outside the JONSWAP range.
|
|
|
|
The validity of the spectral density is questionable.
|
|
|
|
""" % (Hm0, Tp)
|
|
|
|
warnings.warn(txt0)
|
|
|
|
|
|
|
|
if gam < 1 or 7 < gam:
|
|
|
|
txt = """
|
|
|
|
The peakedness factor, gamma, is possibly too large.
|
|
|
|
The validity of the spectral density is questionable.
|
|
|
|
"""
|
|
|
|
warnings.warn(txt)
|
|
|
|
|
|
|
|
def _localspec(self, wn):
|
|
|
|
Gf = self.peak_e_factor(wn)
|
|
|
|
return Gf * _gengamspec(wn, self.N, self.M)
|
|
|
|
|
|
|
|
def _check_parametric_ag(self, N, M, gammai):
|
|
|
|
parameters_ok = 3 <= N <= 50 or 2 <= M <= 9.5 and 1 <= gammai <= 20
|
|
|
|
if not parameters_ok:
|
|
|
|
raise ValueError('Not knowing the normalization because N, ' +
|
|
|
|
'M or peakedness parameter is out of bounds!')
|
|
|
|
if self.sigmaA != 0.07 or self.sigmaB != 0.09:
|
|
|
|
warnings.warn('Use integration to calculate Ag when ' + 'sigmaA!=0.07 or sigmaB!=0.09')
|
|
|
|
|
|
|
|
def _parametric_ag(self):
|
|
|
|
"""
|
|
|
|
Original normalization
|
|
|
|
|
|
|
|
NOTE: that Hm0**2/16 generally is not equal to intS(w)dw
|
|
|
|
with this definition of Ag if sa or sb are changed from the
|
|
|
|
default values
|
|
|
|
"""
|
|
|
|
self.method = 'parametric'
|
|
|
|
|
|
|
|
N = self.N
|
|
|
|
M = self.M
|
|
|
|
gammai = self.gamma
|
|
|
|
f1NM = 4.1 * (N - 2 * M ** 0.28 + 5.3) ** (-1.45 * M ** 0.1 + 0.96)
|
|
|
|
f2NM = ((2.2 * M ** (-3.3) + 0.57) * N ** (-0.58 * M ** 0.37 + 0.53) -
|
|
|
|
1.04 * M ** (-1.9) + 0.94)
|
|
|
|
self.Ag = (1 + f1NM * log(gammai) ** f2NM) / gammai
|
|
|
|
# if N == 5 && M == 4,
|
|
|
|
# options.Ag = (1+1.0*log(gammai).**1.16)/gammai
|
|
|
|
# options.Ag = (1-0.287*log(gammai))
|
|
|
|
# options.normalizeMethod = 'Three'
|
|
|
|
# elseif N == 4 && M == 4,
|
|
|
|
# options.Ag = (1+1.1*log(gammai).**1.19)/gammai
|
|
|
|
|
|
|
|
self._check_parametric_ag(N, M, gammai)
|
|
|
|
|
|
|
|
def _custom_ag(self):
|
|
|
|
self.method = 'custom'
|
|
|
|
if self.Ag <= 0:
|
|
|
|
raise ValueError('Ag must be larger than 0!')
|
|
|
|
|
|
|
|
def _integrate_ag(self):
|
|
|
|
# normalizing by integration
|
|
|
|
self.method = 'integration'
|
|
|
|
if self.wnc < 1.0:
|
|
|
|
raise ValueError('Normalized cutoff frequency, wnc, ' +
|
|
|
|
'must be larger than one!')
|
|
|
|
area1, unused_err1 = integrate.quad(self._localspec, 0, 1)
|
|
|
|
area2, unused_err2 = integrate.quad(self._localspec, 1, self.wnc)
|
|
|
|
area = area1 + area2
|
|
|
|
self.Ag = 1.0 / area
|
|
|
|
|
|
|
|
def _pre_calculate_ag(self):
|
|
|
|
""" PRECALCULATEAG Precalculate normalization.
|
|
|
|
"""
|
|
|
|
if self.gamma == 1:
|
|
|
|
self.Ag = 1.0
|
|
|
|
self.method = 'parametric'
|
|
|
|
elif self.Ag is not None:
|
|
|
|
self._custom_ag()
|
|
|
|
else:
|
|
|
|
norm_ag = dict(i=self._integrate_ag,
|
|
|
|
p=self._parametric_ag,
|
|
|
|
c=self._custom_ag)[self.method[0]]
|
|
|
|
norm_ag()
|
|
|
|
|
|
|
|
def peak_e_factor(self, wn):
|
|
|
|
""" PEAKENHANCEMENTFACTOR
|
|
|
|
"""
|
|
|
|
w = maximum(atleast_1d(wn), 0.0)
|
|
|
|
sab = where(w > 1, self.sigmaB, self.sigmaA)
|
|
|
|
|
|
|
|
wnm12 = 0.5 * ((w - 1.0) / sab) ** 2.0
|
|
|
|
Gf = self.gamma ** (exp(-wnm12))
|
|
|
|
return Gf
|
|
|
|
|
|
|
|
def __call__(self, wi):
|
|
|
|
""" JONSWAP spectral density
|
|
|
|
"""
|
|
|
|
w = atleast_1d(wi)
|
|
|
|
if (self.Hm0 > 0.0):
|
|
|
|
|
|
|
|
N = self.N
|
|
|
|
M = self.M
|
|
|
|
wp = 2 * pi / self.Tp
|
|
|
|
wn = w / wp
|
|
|
|
Ag = self.Ag
|
|
|
|
Hm0 = self.Hm0
|
|
|
|
Gf = self.peak_e_factor(wn)
|
|
|
|
S = ((Hm0 / 4.0) ** 2 / wp * Ag) * Gf * _gengamspec(wn, N, M)
|
|
|
|
else:
|
|
|
|
S = zeros_like(w)
|
|
|
|
return S
|
|
|
|
|
|
|
|
|
|
|
|
def phi1(wi, h, g=9.81):
|
|
|
|
""" Factor transforming spectra to finite water depth spectra.
|
|
|
|
|
|
|
|
Input
|
|
|
|
-----
|
|
|
|
w : arraylike
|
|
|
|
angular frequency [rad/s]
|
|
|
|
h : scalar
|
|
|
|
water depth [m]
|
|
|
|
g : scalar
|
|
|
|
acceleration of gravity [m/s**2]
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
tr : arraylike
|
|
|
|
transformation factors
|
|
|
|
|
|
|
|
Example:
|
|
|
|
-------
|
|
|
|
Transform a JONSWAP spectrum to a spectrum for waterdepth = 30 m
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> S = wsm.Jonswap()
|
|
|
|
>>> w = np.arange(3.0)
|
|
|
|
>>> S(w)*wsm.phi1(w,30.0)
|
|
|
|
array([ 0. , 1.0358056 , 0.03796281])
|
|
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
---------
|
|
|
|
Buows, E., Gunther, H., Rosenthal, W. and Vincent, C.L. (1985)
|
|
|
|
'Similarity of the wind wave spectrum in finite depth water:
|
|
|
|
1 spectral form.'
|
|
|
|
J. Geophys. Res., Vol 90, No. C1, pp 975-986
|
|
|
|
|
|
|
|
"""
|
|
|
|
w = atleast_1d(wi)
|
|
|
|
if h == inf: # % special case infinite water depth
|
|
|
|
return ones_like(w)
|
|
|
|
|
|
|
|
k1 = w2k(w, 0, inf, g=g)[0]
|
|
|
|
dw1 = 2.0 * w / g # % dw/dk|h=inf
|
|
|
|
k2 = w2k(w, 0, h, g=g)[0]
|
|
|
|
|
|
|
|
k2h = k2 * h
|
|
|
|
den = where(k1 == 0, 1, (tanh(k2h) + k2h / cosh(k2h) ** 2.0))
|
|
|
|
dw2 = where(k1 == 0, 0, dw1 / den) # dw/dk|h=h0
|
|
|
|
return where(k1 == 0, 0, (k1 / k2) ** 3.0 * dw2 / dw1)
|
|
|
|
|
|
|
|
|
|
|
|
class Tmaspec(Jonswap):
|
|
|
|
|
|
|
|
""" JONSWAP spectrum for finite water depth
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
h = water depth (default 42 [m])
|
|
|
|
g : acceleration of gravity [m/s**2]
|
|
|
|
Hm0 = significant wave height (default 7 [m])
|
|
|
|
Tp = peak period (default 11 (sec))
|
|
|
|
gamma = peakedness factor determines the concentraton
|
|
|
|
of the spectrum on the peak frequency.
|
|
|
|
Usually in the range 1 <= gamma <= 7.
|
|
|
|
default depending on Hm0, Tp, see getjonswappeakedness)
|
|
|
|
sigmaA = spectral width parameter for w<wp (default 0.07)
|
|
|
|
sigmaB = spectral width parameter for w<wp (default 0.09)
|
|
|
|
Ag = normalization factor used when gamma>1:
|
|
|
|
N = scalar defining decay of high frequency part. (default 5)
|
|
|
|
M = scalar defining spectral width around the peak. (default 4)
|
|
|
|
method = String defining method used to estimate Ag when gamma>1
|
|
|
|
'integrate' : Ag = 1/gaussq(Gf.*ggamspec(wn,N,M),0,wnc) (default)
|
|
|
|
'parametric': Ag = (1+f1(N,M)*log(gamma)^f2(N,M))/gamma
|
|
|
|
'custom' : Ag = Ag
|
|
|
|
wnc = wc/wp normalized cut off frequency used when calculating Ag
|
|
|
|
by integration (default 6)
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
w : array-like
|
|
|
|
angular frequencies [rad/s]
|
|
|
|
|
|
|
|
Description
|
|
|
|
------------
|
|
|
|
The evaluated spectrum is
|
|
|
|
S(w) = Sj(w)*phi(w,h)
|
|
|
|
where
|
|
|
|
Sj = jonswap spectrum
|
|
|
|
phi = modification due to water depth
|
|
|
|
|
|
|
|
The concept is based on a similarity law, and its validity is verified
|
|
|
|
through analysis of 3 data sets from: TEXEL, MARSEN projects (North
|
|
|
|
Sea) and ARSLOE project (Duck, North Carolina, USA). The data include
|
|
|
|
observations at water depths ranging from 6 m to 42 m.
|
|
|
|
|
|
|
|
Example
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> import pylab as plb
|
|
|
|
>>> w = plb.linspace(0,2.5)
|
|
|
|
>>> S = wsm.Tmaspec(h=10,gamma=1) # Bretschneider spectrum Hm0=7, Tp=11
|
|
|
|
|
|
|
|
o=plb.plot(w,S(w))
|
|
|
|
o=plb.plot(w,S(w,h=21))
|
|
|
|
o=plb.plot(w,S(w,h=42))
|
|
|
|
plb.show()
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
See also
|
|
|
|
---------
|
|
|
|
Bretschneider,
|
|
|
|
Jonswap,
|
|
|
|
phi1,
|
|
|
|
Torsethaugen
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
Buows, E., Gunther, H., Rosenthal, W., and Vincent, C.L. (1985)
|
|
|
|
'Similarity of the wind wave spectrum in finite depth water:
|
|
|
|
1 spectral form.'
|
|
|
|
J. Geophys. Res., Vol 90, No. C1, pp 975-986
|
|
|
|
|
|
|
|
Hasselman et al. (1973)
|
|
|
|
Measurements of Wind-Wave Growth and Swell Decay during the Joint
|
|
|
|
North Sea Project (JONSWAP).
|
|
|
|
Ergansungsheft, Reihe A(8), Nr. 12, deutschen Hydrografischen
|
|
|
|
Zeitschrift.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7.0, Tp=11.0, gamma=None, sigmaA=0.07, sigmaB=0.09,
|
|
|
|
Ag=None, N=5, M=4, method='integration', wnc=6.0,
|
|
|
|
chk_seastate=True, h=42, g=9.81):
|
|
|
|
self.g = g
|
|
|
|
self.h = h
|
|
|
|
super(Tmaspec, self).__init__(Hm0, Tp, gamma, sigmaA, sigmaB, Ag, N,
|
|
|
|
M, method, wnc, chk_seastate)
|
|
|
|
self.type = 'TMA'
|
|
|
|
|
|
|
|
def phi(self, w, h=None, g=None):
|
|
|
|
if h is None:
|
|
|
|
h = self.h
|
|
|
|
if g is None:
|
|
|
|
g = self.g
|
|
|
|
return phi1(w, h, g)
|
|
|
|
|
|
|
|
def __call__(self, w, h=None, g=None):
|
|
|
|
jonswap = super(Tmaspec, self).__call__(w)
|
|
|
|
return jonswap * self.phi(w, h, g)
|
|
|
|
|
|
|
|
|
|
|
|
class Torsethaugen(ModelSpectrum):
|
|
|
|
|
|
|
|
"""
|
|
|
|
Torsethaugen double peaked (swell + wind) spectrum model
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
Hm0 : significant wave height (default 7 (m))
|
|
|
|
Tp : peak period (default 11 (sec))
|
|
|
|
wnc : wc/wp normalized cut off frequency used when calculating Ag
|
|
|
|
by integration (default 6)
|
|
|
|
method : String defining method used to estimate normalization factors, Ag,
|
|
|
|
in the the modified JONSWAP spectra when gamma>1
|
|
|
|
'integrate' : Ag = 1/quad(Gf.*gengamspec(wn,N,M),0,wnc)
|
|
|
|
'parametric': Ag = (1+f1(N,M)*log(gamma)**f2(N,M))/gamma
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
w : array-like
|
|
|
|
angular frequencies [rad/s]
|
|
|
|
|
|
|
|
Description
|
|
|
|
-----------
|
|
|
|
The double peaked (swell + wind) Torsethaugen spectrum is
|
|
|
|
modelled as S(w) = Ss(w) + Sw(w) where Ss and Sw are modified
|
|
|
|
JONSWAP spectrums for swell and wind peak, respectively.
|
|
|
|
The energy is divided between the two peaks according
|
|
|
|
to empirical parameters, which peak that is primary depends on parameters.
|
|
|
|
The empirical parameters are found for classes of Hm0 and Tp,
|
|
|
|
originating from a dataset consisting of 20 000 spectra divided
|
|
|
|
into 146 different classes of Hm0 and Tp. (Data measured at the
|
|
|
|
Statfjord field in the North Sea in a period from 1980 to 1989.)
|
|
|
|
The range of the measured Hm0 and Tp for the dataset
|
|
|
|
are from 0.5 to 11 meters and from 3.5 to 19 sec, respectively.
|
|
|
|
|
|
|
|
Preliminary comparisons with spectra from other areas indicate that
|
|
|
|
some of the empirical parameters are dependent on geographical location.
|
|
|
|
Thus the model must be used with care for other areas than the
|
|
|
|
North Sea and sea states outside the area where measured data
|
|
|
|
are available.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> import pylab as plb
|
|
|
|
>>> w = plb.linspace(0,4)
|
|
|
|
>>> S = wsm.Torsethaugen(Hm0=6, Tp=8)
|
|
|
|
|
|
|
|
h=plb.plot(w,S(w),w,S.wind(w),w,S.swell(w))
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Bretschneider
|
|
|
|
Jonswap
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
Torsethaugen, K. (2004)
|
|
|
|
"Simplified Double Peak Spectral Model for Ocean Waves"
|
|
|
|
In Proc. 14th ISOPE
|
|
|
|
|
|
|
|
Torsethaugen, K. (1996)
|
|
|
|
Model for a doubly peaked wave spectrum
|
|
|
|
Report No. STF22 A96204. SINTEF Civil and Environm. Engineering, Trondheim
|
|
|
|
|
|
|
|
Torsethaugen, K. (1994)
|
|
|
|
'Model for a doubly peaked spectrum. Lifetime and fatigue strength
|
|
|
|
estimation implications.'
|
|
|
|
International Workshop on Floating Structures in Coastal zone,
|
|
|
|
Hiroshima, November 1994.
|
|
|
|
|
|
|
|
Torsethaugen, K. (1993)
|
|
|
|
'A two peak wave spectral model.'
|
|
|
|
In proceedings OMAE, Glasgow
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
type = 'Torsethaugen'
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7, Tp=11, method='integration', wnc=6, gravity=9.81,
|
|
|
|
chk_seastate=True, **kwds):
|
|
|
|
super(Torsethaugen, self).__init__(Hm0, Tp)
|
|
|
|
|
|
|
|
self.method = method
|
|
|
|
self.wnc = wnc
|
|
|
|
self.gravity = gravity
|
|
|
|
self.wind = None
|
|
|
|
self.swell = None
|
|
|
|
if chk_seastate:
|
|
|
|
self.chk_seastate()
|
|
|
|
|
|
|
|
self._init_spec()
|
|
|
|
|
|
|
|
def __call__(self, w):
|
|
|
|
""" TORSETHAUGEN spectral density
|
|
|
|
"""
|
|
|
|
return self.wind(w) + self.swell(w)
|
|
|
|
|
|
|
|
def _chk_extra_param(self):
|
|
|
|
Hm0 = self.Hm0
|
|
|
|
Tp = self.Tp
|
|
|
|
if Hm0 > 11 or Hm0 > max((Tp / 3.6) ** 2, (Tp - 2) * 12 / 11):
|
|
|
|
txt0 = """Hm0 is outside the valid range.
|
|
|
|
The validity of the spectral density is questionable"""
|
|
|
|
warnings.warn(txt0)
|
|
|
|
|
|
|
|
if Tp > 20 or Tp < 3:
|
|
|
|
txt1 = """Tp is outside the valid range.
|
|
|
|
The validity of the spectral density is questionable"""
|
|
|
|
warnings.warn(txt1)
|
|
|
|
|
|
|
|
def _init_spec(self):
|
|
|
|
""" Initialize swell and wind part of Torsethaugen spectrum
|
|
|
|
"""
|
|
|
|
monitor = 0
|
|
|
|
Hm0 = self.Hm0
|
|
|
|
Tp = self.Tp
|
|
|
|
gravity1 = self.gravity # m/s**2
|
|
|
|
|
|
|
|
min = minimum # @ReservedAssignment
|
|
|
|
max = maximum # @ReservedAssignment
|
|
|
|
|
|
|
|
# The parameter values below are found comparing the
|
|
|
|
# model to average measured spectra for the Statfjord Field
|
|
|
|
# in the Northern North Sea.
|
|
|
|
Af = 6.6 # m**(-1/3)*sec
|
|
|
|
AL = 2 # sec/sqrt(m)
|
|
|
|
Au = 25 # sec
|
|
|
|
KG = 35
|
|
|
|
KG0 = 3.5
|
|
|
|
KG1 = 1 # m
|
|
|
|
r = 0.857 # 6/7
|
|
|
|
K0 = 0.5 # 1/sqrt(m)
|
|
|
|
K00 = 3.2
|
|
|
|
|
|
|
|
M0 = 4
|
|
|
|
B1 = 2 # sec
|
|
|
|
B2 = 0.7
|
|
|
|
B3 = 3.0 # m
|
|
|
|
S0 = 0.08 # m**2*s
|
|
|
|
S1 = 3 # m
|
|
|
|
|
|
|
|
# Preliminary comparisons with spectra from other areas indicate that
|
|
|
|
# the parameters on the line below can be dependent on geographical
|
|
|
|
# location
|
|
|
|
A10 = 0.7
|
|
|
|
A1 = 0.5
|
|
|
|
A20 = 0.6
|
|
|
|
A2 = 0.3
|
|
|
|
A3 = 6
|
|
|
|
|
|
|
|
Tf = Af * (Hm0) ** (1.0 / 3.0)
|
|
|
|
Tl = AL * sqrt(Hm0) # lower limit
|
|
|
|
Tu = Au # upper limit
|
|
|
|
|
|
|
|
# Non-dimensional scales
|
|
|
|
# New call pab April 2005
|
|
|
|
El = min(max((Tf - Tp) / (Tf - Tl), 0), 1) # wind sea
|
|
|
|
Eu = min(max((Tp - Tf) / (Tu - Tf), 0), 1) # Swell
|
|
|
|
|
|
|
|
if Tp < Tf: # Wind dominated seas
|
|
|
|
# Primary peak (wind dominated)
|
|
|
|
Nw = K0 * sqrt(Hm0) + K00 # high frequency exponent
|
|
|
|
Mw = M0 # spectral width exponent
|
|
|
|
Rpw = min((1 - A10) * exp(-(El / A1) ** 2) + A10, 1)
|
|
|
|
Hpw = Rpw * Hm0 # significant waveheight wind
|
|
|
|
Tpw = Tp # primary peak period
|
|
|
|
# peak enhancement factor
|
|
|
|
gammaw = KG * (1 + KG0 * exp(-Hm0 / KG1)) * \
|
|
|
|
(2 * pi / gravity1 * Rpw * Hm0 / (Tp ** 2)) ** r
|
|
|
|
gammaw = max(gammaw, 1)
|
|
|
|
# Secondary peak (swell)
|
|
|
|
Ns = Nw # high frequency exponent
|
|
|
|
Ms = Mw # spectral width exponent
|
|
|
|
Rps = sqrt(1.0 - Rpw ** 2.0)
|
|
|
|
Hps = Rps * Hm0 # significant waveheight swell
|
|
|
|
Tps = Tf + B1
|
|
|
|
gammas = 1.0
|
|
|
|
|
|
|
|
if monitor:
|
|
|
|
if Rps > 0.1:
|
|
|
|
print(' Spectrum for Wind dominated sea')
|
|
|
|
else:
|
|
|
|
print(' Spectrum for pure wind sea')
|
|
|
|
else: # swell dominated seas
|
|
|
|
|
|
|
|
# Primary peak (swell)
|
|
|
|
Ns = K0 * sqrt(Hm0) + K00 # high frequency exponent
|
|
|
|
Ms = M0 # spectral width exponent
|
|
|
|
Rps = min((1 - A20) * exp(-(Eu / A2) ** 2) + A20, 1)
|
|
|
|
Hps = Rps * Hm0 # significant waveheight swell
|
|
|
|
Tps = Tp # primary peak period
|
|
|
|
# peak enhancement factor
|
|
|
|
gammas = KG * (1 + KG0 * exp(-Hm0 / KG1)) * \
|
|
|
|
(2 * pi / gravity1 * Hm0 / (Tf ** 2)) ** r * (1 + A3 * Eu)
|
|
|
|
gammas = max(gammas, 1)
|
|
|
|
|
|
|
|
# Secondary peak (wind)
|
|
|
|
Nw = Ns # high frequency exponent
|
|
|
|
Mw = M0 * (1 - B2 * exp(-Hm0 / B3)) # spectral width exponent
|
|
|
|
Rpw = sqrt(1 - Rps ** 2)
|
|
|
|
Hpw = Rpw * Hm0 # significant waveheight wind
|
|
|
|
|
|
|
|
C = (Nw - 1) / Mw
|
|
|
|
B = Nw / Mw
|
|
|
|
G0w = B ** C * Mw / sp.gamma(C) # normalizing factor
|
|
|
|
# G0w = exp(C*log(B)+log(Mw)-gammaln(C))
|
|
|
|
# G0w = Mw/((B)**(-C)*gamma(C))
|
|
|
|
|
|
|
|
if Hpw > 0:
|
|
|
|
Tpw = (16 * S0 * (1 - exp(-Hm0 / S1)) * (0.4) **
|
|
|
|
Nw / (G0w * Hpw ** 2)) ** (-1.0 / (Nw - 1.0))
|
|
|
|
else:
|
|
|
|
Tpw = inf
|
|
|
|
|
|
|
|
# Tpw = max(Tpw,2.5)
|
|
|
|
gammaw = 1
|
|
|
|
if monitor:
|
|
|
|
if Rpw > 0.1:
|
|
|
|
print(' Spectrum for swell dominated sea')
|
|
|
|
else:
|
|
|
|
print(' Spectrum for pure swell sea')
|
|
|
|
|
|
|
|
if monitor:
|
|
|
|
if (3.6 * sqrt(Hm0) <= Tp & Tp <= 5 * sqrt(Hm0)):
|
|
|
|
print(' Jonswap range')
|
|
|
|
|
|
|
|
print('Hm0 = %g' % Hm0)
|
|
|
|
print('Ns, Ms = %g, %g Nw, Mw = %g, %g' % (Ns, Ms, Nw, Mw))
|
|
|
|
print('gammas = %g gammaw = %g' % (gammas, gammaw))
|
|
|
|
print('Rps = %g Rpw = %g' % (Rps, Rpw))
|
|
|
|
print('Hps = %g Hpw = %g' % (Hps, Hpw))
|
|
|
|
print('Tps = %g Tpw = %g' % (Tps, Tpw))
|
|
|
|
|
|
|
|
# G0s=Ms/((Ns/Ms)**(-(Ns-1)/Ms)*gamma((Ns-1)/Ms )) #normalizing factor
|
|
|
|
|
|
|
|
self.wind = Jonswap(Hm0=Hpw, Tp=Tpw, gamma=gammaw, N=Nw, M=Mw,
|
|
|
|
method=self.method, chk_seastate=False)
|
|
|
|
self.swell = Jonswap(Hm0=Hps, Tp=Tps, gamma=gammas, N=Ns, M=Ms,
|
|
|
|
method=self.method, chk_seastate=False)
|
|
|
|
|
|
|
|
|
|
|
|
class McCormick(Bretschneider):
|
|
|
|
|
|
|
|
""" McCormick spectral density model
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
Hm0 = significant wave height (default 7 (m))
|
|
|
|
Tp = peak period (default 11 (sec))
|
|
|
|
Tz = zero-down crossing period (default 0.8143*Tp)
|
|
|
|
M = scalar defining spectral width around the peak.
|
|
|
|
(default depending on Tp and Tz)
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
w : array-like
|
|
|
|
angular frequencies [rad/s]
|
|
|
|
|
|
|
|
Description
|
|
|
|
-----------
|
|
|
|
The McCormick spectrum parameterization is a modification of the
|
|
|
|
Bretschneider spectrum and defined as
|
|
|
|
|
|
|
|
S(w) = (M+1)*(Hm0/4)^2/wp*(wp./w)^(M+1)*exp(-(M+1)/M*(wp/w)^M)
|
|
|
|
where
|
|
|
|
Tp/Tz=(1+1/M)^(1/M)/gamma(1+1/M)
|
|
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> S = wsm.McCormick(Hm0=6.5,Tp=10)
|
|
|
|
>>> S(range(4))
|
|
|
|
array([ 0. , 1.87865908, 0.15050447, 0.02994663])
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Bretschneider
|
|
|
|
Jonswap,
|
|
|
|
Torsethaugen
|
|
|
|
|
|
|
|
|
|
|
|
References:
|
|
|
|
-----------
|
|
|
|
M.E. McCormick (1999)
|
|
|
|
"Application of the Generic Spectral Formula to Fetch-Limited Seas"
|
|
|
|
Marine Technology Society, Vol 33, No. 3, pp 27-32
|
|
|
|
"""
|
|
|
|
|
|
|
|
type = 'McCormick'
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7, Tp=11, Tz=None, M=None, chk_seastate=True):
|
|
|
|
if Tz is None:
|
|
|
|
Tz = 0.8143 * Tp
|
|
|
|
self.Tz = Tz
|
|
|
|
|
|
|
|
if M is None and Hm0 > 0:
|
|
|
|
self._TpdTz = Tp / Tz
|
|
|
|
M = 1.0 / optimize.fminbound(self._localoptfun, 0.01, 5)
|
|
|
|
N = M + 1.0
|
|
|
|
super(McCormick, self).__init__(Hm0, Tp, N, M, chk_seastate)
|
|
|
|
|
|
|
|
def _localoptfun(self, x):
|
|
|
|
# LOCALOPTFUN Local function to optimize.
|
|
|
|
y = 1.0 + x
|
|
|
|
return (y ** (x) / sp.gamma(y) - self._TpdTz) ** 2.0
|
|
|
|
|
|
|
|
|
|
|
|
class OchiHubble(ModelSpectrum):
|
|
|
|
|
|
|
|
""" OchiHubble bimodal spectral density model.
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
|
|
|
|
Hm0 : significant wave height (default 7 (m))
|
|
|
|
par : integer defining the parametrization (default 0)
|
|
|
|
0 : The most probable spectrum
|
|
|
|
1,2,...10 : gives 95% Confidence spectra
|
|
|
|
|
|
|
|
The OchiHubble bimodal spectrum is modelled as
|
|
|
|
S(w) = Ss(w) + Sw(w) where Ss and Sw are modified Bretschneider
|
|
|
|
spectra for swell and wind peak, respectively.
|
|
|
|
|
|
|
|
The OH spectrum is a six parameter spectrum, all functions of Hm0.
|
|
|
|
The values of these parameters are determined from a analysis of data
|
|
|
|
obtained in the North Atlantic. The source of the data is the same as
|
|
|
|
that for the development of the Pierson-Moskowitz spectrum, but
|
|
|
|
analysis is carried out on over 800 spectra including those in
|
|
|
|
partially developed seas and those having a bimodal shape. From a
|
|
|
|
statistical analysis of the data, a family of wave spectra consisting
|
|
|
|
of 11 members is generated for a desired sea severity (Hm0) with the
|
|
|
|
coefficient of 0.95.
|
|
|
|
A significant advantage of using a family of spectra for design of
|
|
|
|
marine systems is that one of the family members yields the largest
|
|
|
|
response such as motions or wave induced forces for a specified sea
|
|
|
|
severity, while another yields the smallest response with confidence
|
|
|
|
coefficient of 0.95.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> S = wsm.OchiHubble(par=2)
|
|
|
|
>>> S(range(4))
|
|
|
|
array([ 0. , 0.90155636, 0.04185445, 0.00583207])
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Bretschneider,
|
|
|
|
Jonswap,
|
|
|
|
Torsethaugen
|
|
|
|
|
|
|
|
References:
|
|
|
|
----------
|
|
|
|
Ochi, M.K. and Hubble, E.N. (1976)
|
|
|
|
'On six-parameter wave spectra.'
|
|
|
|
In Proc. 15th Conf. Coastal Engng., Vol.1, pp301-328
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
type = 'Ochi Hubble'
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7, par=1, chk_seastate=True):
|
|
|
|
super(OchiHubble, self).__init__(Hm0, Tp=1)
|
|
|
|
|
|
|
|
self.par = par
|
|
|
|
self.wind = None
|
|
|
|
self.swell = None
|
|
|
|
|
|
|
|
if chk_seastate:
|
|
|
|
self.chk_seastate()
|
|
|
|
self._init_spec()
|
|
|
|
|
|
|
|
def __call__(self, w):
|
|
|
|
return self.wind(w) + self.swell(w)
|
|
|
|
|
|
|
|
def _init_spec(self):
|
|
|
|
|
|
|
|
hp = array([[0.84, 0.54],
|
|
|
|
[0.84, 0.54],
|
|
|
|
[0.84, 0.54],
|
|
|
|
[0.84, 0.54],
|
|
|
|
[0.84, 0.54],
|
|
|
|
[0.95, 0.31],
|
|
|
|
[0.65, 0.76],
|
|
|
|
[0.90, 0.44],
|
|
|
|
[0.77, 0.64],
|
|
|
|
[0.73, 0.68],
|
|
|
|
[0.92, 0.39]])
|
|
|
|
wa = array([[0.7, 1.15],
|
|
|
|
[0.93, 1.5],
|
|
|
|
[0.41, 0.88],
|
|
|
|
[0.74, 1.3],
|
|
|
|
[0.62, 1.03],
|
|
|
|
[0.70, 1.50],
|
|
|
|
[0.61, 0.94],
|
|
|
|
[0.81, 1.60],
|
|
|
|
[0.54, 0.61],
|
|
|
|
[0.70, 0.99],
|
|
|
|
[0.70, 1.37]])
|
|
|
|
wb = array([[0.046, 0.039],
|
|
|
|
[0.056, 0.046],
|
|
|
|
[0.016, 0.026],
|
|
|
|
[0.052, 0.039],
|
|
|
|
[0.039, 0.030],
|
|
|
|
[0.046, 0.046],
|
|
|
|
[0.039, 0.036],
|
|
|
|
[0.052, 0.033],
|
|
|
|
[0.039, 0.000],
|
|
|
|
[0.046, 0.039],
|
|
|
|
[0.046, 0.039]])
|
|
|
|
Lpar = array([[3.00, 1.54, -0.062],
|
|
|
|
[3.00, 2.77, -0.112],
|
|
|
|
[2.55, 1.82, -0.089],
|
|
|
|
[2.65, 3.90, -0.085],
|
|
|
|
[2.60, 0.53, -0.069],
|
|
|
|
[1.35, 2.48, -0.102],
|
|
|
|
[4.95, 2.48, -0.102],
|
|
|
|
[1.80, 2.95, -0.105],
|
|
|
|
[4.50, 1.95, -0.082],
|
|
|
|
[6.40, 1.78, -0.069],
|
|
|
|
[0.70, 1.78, -0.069]])
|
|
|
|
Hm0 = self.Hm0
|
|
|
|
Lpari = Lpar[self.par]
|
|
|
|
Li = hstack((Lpari[0], Lpari[1] * exp(Lpari[2] * Hm0)))
|
|
|
|
|
|
|
|
Hm0i = hp[self.par] * Hm0
|
|
|
|
Tpi = 2 * pi * exp(wb[self.par] * Hm0) / wa[self.par]
|
|
|
|
Ni = 4 * Li + 1
|
|
|
|
Mi = [4, 4]
|
|
|
|
|
|
|
|
self.swell = Bretschneider(Hm0=Hm0i[0], Tp=Tpi[0], N=Ni[0], M=Mi[0])
|
|
|
|
self.wind = Bretschneider(Hm0=Hm0i[1], Tp=Tpi[1], N=Ni[1], M=Mi[1])
|
|
|
|
|
|
|
|
def _chk_extra_param(self):
|
|
|
|
if self.par < 0 or 10 < self.par:
|
|
|
|
raise ValueError('Par must be an integer from 0 to 10!')
|
|
|
|
|
|
|
|
|
|
|
|
class Wallop(Bretschneider):
|
|
|
|
|
|
|
|
"""Wallop spectral density model.
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
Hm0 = significant wave height (default 7 (m))
|
|
|
|
Tp = peak period (default 11 (sec))
|
|
|
|
N = shape factor, i.e. slope for the high frequency
|
|
|
|
% part (default depending on Hm0 and Tp, see below)
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
w : array-like
|
|
|
|
angular frequencies [rad/s]
|
|
|
|
|
|
|
|
Description
|
|
|
|
-----------
|
|
|
|
The WALLOP spectrum parameterization is a modification of the Bretschneider
|
|
|
|
spectrum and defined as
|
|
|
|
|
|
|
|
S(w) = A * G0 * wn**(-N)*exp(-N/(4*wn**4))
|
|
|
|
where
|
|
|
|
G0 = Normalizing factor related to Bretschneider form
|
|
|
|
A = (Hm0/4)^2 / wp (Normalization factor)
|
|
|
|
wn = w/wp
|
|
|
|
wp = 2*pi/Tp, angular peak frequency
|
|
|
|
N = abs((log(2*pi^2)+2*log(Hm0/4)-2*log(Lp))/log(2))
|
|
|
|
Lp = wave length corresponding to the peak frequency, wp.
|
|
|
|
|
|
|
|
If N=5 it becomes the same as the JONSWAP spectrum with
|
|
|
|
peak enhancement factor gamma=1 or the Bretschneider
|
|
|
|
(Pierson-Moskowitz) spectrum.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> S = wsm.Wallop(Hm0=6.5, Tp=10)
|
|
|
|
>>> S(range(4))
|
|
|
|
array([ 0.00000000e+00, 9.36921871e-01, 2.76991078e-03,
|
|
|
|
7.72996150e-05])
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
Bretschneider
|
|
|
|
Jonswap,
|
|
|
|
Torsethaugen
|
|
|
|
|
|
|
|
References:
|
|
|
|
-----------
|
|
|
|
Huang, N.E., Long, S.R., Tung, C.C, Yuen, Y. and Bilven, L.F. (1981)
|
|
|
|
"A unified two parameter wave spectral model for a generous sea state"
|
|
|
|
J. Fluid Mechanics, Vol.112, pp 203-224
|
|
|
|
"""
|
|
|
|
|
|
|
|
type = 'Wallop'
|
|
|
|
|
|
|
|
def __init__(self, Hm0=7, Tp=11, N=None, chk_seastate=True):
|
|
|
|
M = 4
|
|
|
|
if N is None:
|
|
|
|
wp = 2. * pi / Tp
|
|
|
|
kp = w2k(wp, 0, inf)[0] # wavenumber at peak frequency
|
|
|
|
Lp = 2. * pi / kp # wave length at the peak frequency
|
|
|
|
N = abs((log(2. * pi ** 2.) + 2 * log(Hm0 / 4) -
|
|
|
|
2.0 * log(Lp)) / log(2))
|
|
|
|
|
|
|
|
super(Wallop, self).__init__(Hm0, Tp, N, M, chk_seastate)
|
|
|
|
|
|
|
|
|
|
|
|
class Spreading(object):
|
|
|
|
"""
|
|
|
|
Directional spreading function.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
theta, w : arrays
|
|
|
|
angles and angular frequencies given in radians and rad/s,
|
|
|
|
respectively. Lenghts are Nt and Nw.
|
|
|
|
wc : real scalar
|
|
|
|
cut over frequency
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
D : 2D array
|
|
|
|
Directonal spreading function. size Nt X Nw.
|
|
|
|
The principal direction of D is always along the x-axis.
|
|
|
|
phi0 : real scalar
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
----------------
|
|
|
|
type : string (default 'cos-2s')
|
|
|
|
type of spreading function, see options below
|
|
|
|
'cos-2s' : N(S)*[cos((theta-theta0)/2)]**(2*S) (0 < S)
|
|
|
|
'Box-car' : N(A)*I( -A < theta-theta0 < A) (0 < A < pi)
|
|
|
|
'von-Mises' : N(K)*exp(K*cos(theta-theta0)) (0 < K)
|
|
|
|
'Poisson' : N(X)/(1-2*X*cos(theta-theta0)+X**2) (0 < X < 1)
|
|
|
|
'sech-2' : N(B)*sech(B*(theta-theta0))**2 (0 < B)
|
|
|
|
'wrapped-normal':
|
|
|
|
[1 + 2*sum exp(-(n*D1)^2/2)*cos(n*(theta-theta0))]/(2*pi) (0 < D1)
|
|
|
|
(N(.) = normalization factor)
|
|
|
|
(the first letter is enough for unique identification)
|
|
|
|
|
|
|
|
theta0 : callable, matrix or a scalar
|
|
|
|
defines average direction given in radians at every angular frequency.
|
|
|
|
(length 1 or length == length(wn)) (default 0)
|
|
|
|
method : string or integer
|
|
|
|
Defines function used for direcional spreading parameter:
|
|
|
|
0, None : S(wn) = s_a, frequency independent
|
|
|
|
1, 'mitsuyasu': S(wn) frequency dependent (default)
|
|
|
|
where S(wn) = s_a *(wn)**m_a, for wn_lo <= wn < wn_c
|
|
|
|
= s_b *(wn)**m_b, for wn_c <= wn < wn_up
|
|
|
|
= 0 otherwise
|
|
|
|
2, 'donelan' : B(wn) frequency dependent
|
|
|
|
3, 'banner' : B(wn) frequency dependent
|
|
|
|
where B(wn) = S(wn) for wn_lo <= wn < wn_up
|
|
|
|
= s_b*wn_up**m_b, for wn_up <= wn and method = 2
|
|
|
|
= sc*F(wn) for wn_up <= wn and method = 3
|
|
|
|
where F(wn) = 10^(-0.4+0.8393*exp(-0.567*log(wn^2))) and
|
|
|
|
sc is scalefactor to make the spreading funtion continous.
|
|
|
|
wn_lo, wn_c, wn_up: real scalars (default 0, 1, inf)
|
|
|
|
limits used in the function defining the directional spreading
|
|
|
|
parameter, S() or B() defined above.
|
|
|
|
wn_c is the normalized cutover frequency
|
|
|
|
s_a, s_b : real scalars
|
|
|
|
maximum spread parameters (default [15 15])
|
|
|
|
m_a, m_b : real scalars
|
|
|
|
shape parameters (default [5 -2.5])
|
|
|
|
|
|
|
|
SPREADING return a Directional spreading function.
|
|
|
|
Here the S- or B-parameter, of the COS-2S and SECH-2 spreading function,
|
|
|
|
respectively, is used as a measure of spread. All the parameters of the
|
|
|
|
other distributions are related to this parameter through the first Fourier
|
|
|
|
coefficient, R1, of the directional distribution as follows:
|
|
|
|
R1 = S/(S+1) or S = R1/(1-R1).
|
|
|
|
where
|
|
|
|
Box-car spreading : R1 = sin(A)/A
|
|
|
|
Von Mises spreading: R1 = besseli(1,K)/besseli(0,K),
|
|
|
|
Poisson spreading : R1 = X
|
|
|
|
sech-2 spreading : R1 = pi/(2*B*sinh(pi/(2*B))
|
|
|
|
Wrapped Normal : R1 = exp(-D1^2/2)
|
|
|
|
|
|
|
|
A value of S = 15 corresponds to
|
|
|
|
'box' : A=0.62, 'sech-2' : B=0.89
|
|
|
|
'von-mises' : K=8.3, 'poisson': X=0.94
|
|
|
|
'wrapped-normal': D=0.36
|
|
|
|
|
|
|
|
The COS2S is the most frequently used spreading in engineering practice.
|
|
|
|
Apart from the current meter/pressure cell data in WADIC all
|
|
|
|
instruments seem to support the 'cos2s' distribution for heavier sea
|
|
|
|
states, (Krogstad and Barstow, 1999). For medium sea states
|
|
|
|
a spreading function between COS2S and POISSON seem appropriate,
|
|
|
|
while POISSON seems appropriate for swell.
|
|
|
|
For the COS2S Mitsuyasu et al. parameterized SPa = SPb =
|
|
|
|
11.5*(U10/Cp) where Cp = g/wp is the deep water phase speed at wp and
|
|
|
|
U10 the wind speed at reference height 10m. Hasselman et al. (1980)
|
|
|
|
parameterized mb = -2.33-1.45*(U10/Cp-1.17).
|
|
|
|
Mitsuyasu et al. (1975) showed that SP for wind waves varies from
|
|
|
|
5 to 30 being a function of dimensionless wind speed.
|
|
|
|
However, Goda and Suzuki (1975) proposed SP = 10 for wind waves, SP = 25
|
|
|
|
for swell with short decay distance and SP = 75 for long decay distance.
|
|
|
|
Compared to experiments Krogstad et al. (1998) found that m_a = 5 +/- _EPS
|
|
|
|
and that -1< m_b < -3.5.
|
|
|
|
Values given in the litterature: [s_a s_b m_a m_b wn_lo wn_c wn_up]
|
|
|
|
(Mitsuyasu: s_a == s_b) (cos-2s) [15 15 5 -2.5 0 1 3 ]
|
|
|
|
(Hasselman: s_a ~= s_b) (cos-2s) [6.97 9.77 4.06 -2.3 0 1.05 3 ]
|
|
|
|
(Banner : s_a ~= s_b) (sech2) [2.61 2.28 1.3 -1.3 0.56 0.95 1.6]
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> import pylab as plb
|
|
|
|
>>> D = wsm.Spreading('cos2s',s_a=10.0)
|
|
|
|
|
|
|
|
# Make directionale spectrum
|
|
|
|
>>> S = wsm.Jonswap().tospecdata()
|
|
|
|
>>> SD = D.tospecdata2d(S)
|
|
|
|
|
|
|
|
>>> w = plb.linspace(0,3,257)
|
|
|
|
>>> theta = plb.linspace(-pi,pi,129)
|
|
|
|
|
|
|
|
# Make frequency dependent direction spreading
|
|
|
|
>>> theta0 = lambda w: w*plb.pi/6.0
|
|
|
|
>>> D2 = wsm.Spreading('cos2s',theta0=theta0)
|
|
|
|
|
|
|
|
h = SD.plot()
|
|
|
|
t = plb.contour(D(theta,w)[0].squeeze())
|
|
|
|
t = plb.contour(D2(theta,w)[0])
|
|
|
|
|
|
|
|
# Plot all spreading functions
|
|
|
|
alltypes = ('cos2s','box','mises','poisson','sech2','wrap_norm')
|
|
|
|
for ix in range(len(alltypes)):
|
|
|
|
... D3 = wsm.Spreading(alltypes[ix])
|
|
|
|
... t = plb.figure(ix)
|
|
|
|
... t = plb.contour(D3(theta,w)[0])
|
|
|
|
... t = plb.title(alltypes[ix])
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
mkdspec, plotspec, spec2spec
|
|
|
|
|
|
|
|
References
|
|
|
|
---------
|
|
|
|
Krogstad, H.E. and Barstow, S.F. (1999)
|
|
|
|
"Directional Distributions in Ocean Wave Spectra"
|
|
|
|
Proceedings of the 9th ISOPE Conference, Vol III, pp. 79-86
|
|
|
|
|
|
|
|
Goda, Y. (1999)
|
|
|
|
"Numerical simulation of ocean waves for statistical analysis"
|
|
|
|
Marine Tech. Soc. Journal, Vol. 33, No. 3, pp 5--14
|
|
|
|
|
|
|
|
Banner, M.L. (1990)
|
|
|
|
"Equilibrium spectra of wind waves."
|
|
|
|
J. Phys. Ocean, Vol 20, pp 966--984
|
|
|
|
Donelan M.A., Hamilton J, Hui W.H. (1985)
|
|
|
|
"Directional spectra of wind generated waves."
|
|
|
|
Phil. Trans. Royal Soc. London, Vol A315, pp 387--407
|
|
|
|
|
|
|
|
Hasselmann D, Dunckel M, Ewing JA (1980)
|
|
|
|
"Directional spectra observed during JONSWAP."
|
|
|
|
J. Phys. Ocean, Vol.10, pp 1264--1280
|
|
|
|
|
|
|
|
Mitsuyasu, H, et al. (1975)
|
|
|
|
"Observation of the directional spectrum of ocean waves using a
|
|
|
|
coverleaf buoy."
|
|
|
|
J. Physical Oceanography, Vol.5, No.4, pp 750--760
|
|
|
|
Some of this might be included in help header:
|
|
|
|
cos-2s:
|
|
|
|
NB! The generally strong frequency dependence in directional spread
|
|
|
|
makes it questionable to run load tests of ships and structures with a
|
|
|
|
directional spread independent of frequency (Krogstad and Barstow, 1999).
|
|
|
|
"""
|
|
|
|
# Parameterization of B
|
|
|
|
# def = 2 Donelan et al freq. parametrization for 'sech2'
|
|
|
|
# def = 3 Banner freq. parametrization for 'sech2'
|
|
|
|
# (spa ~= spb) (sech-2) [2.61 2.28 1.3 -1.3 0.56 0.95 1.6]
|
|
|
|
#
|
|
|
|
|
|
|
|
def __init__(self, type='cos-2s', theta0=0, # @ReservedAssignment
|
|
|
|
method='mitsuyasu', s_a=15., s_b=15., m_a=5., m_b=-2.5,
|
|
|
|
wn_lo=0.0, wn_c=1., wn_up=inf):
|
|
|
|
|
|
|
|
self.type = type
|
|
|
|
self.theta0 = theta0
|
|
|
|
self.method = method
|
|
|
|
self.s_a = s_a
|
|
|
|
self.s_b = s_b
|
|
|
|
self.m_a = m_a
|
|
|
|
self.m_b = m_b
|
|
|
|
self.wn_lo = wn_lo
|
|
|
|
self.wn_c = wn_c
|
|
|
|
self.wn_up = wn_up
|
|
|
|
|
|
|
|
self._spreadfun = dict(c=self.cos2s, b=self.box, m=self.mises,
|
|
|
|
v=self.mises,
|
|
|
|
p=self.poisson, s=self.sech2, w=self.wrap_norm)
|
|
|
|
self._fourierdispatch = dict(b=self.fourier2a, m=self.fourier2k,
|
|
|
|
v=self.fourier2k,
|
|
|
|
p=self.fourier2x, s=self.fourier2b,
|
|
|
|
w=self.fourier2d)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def method(self):
|
|
|
|
return self._method
|
|
|
|
|
|
|
|
@method.setter
|
|
|
|
def method(self, method):
|
|
|
|
methods = {'n': None, 'm': 'mitsuyasu', 'd': 'donelan', 'b': 'banner',
|
|
|
|
0: None, 1: 'mitsuyasu', 2: 'donelan', 3: 'banner',
|
|
|
|
None: None}
|
|
|
|
m = method if not isinstance(method, str) else method[0].lower()
|
|
|
|
try:
|
|
|
|
self._method = methods[m]
|
|
|
|
except KeyError:
|
|
|
|
msg = 'Unknown method. Got {}, but expected one of {}!'
|
|
|
|
raise ValueError(msg.format(method, str(methods.keys())))
|
|
|
|
|
|
|
|
def __call__(self, theta, w=1, wc=1):
|
|
|
|
spreadfun = self._spreadfun[self.type[0]]
|
|
|
|
return spreadfun(theta, w, wc)
|
|
|
|
|
|
|
|
def _normalize_angle(self, wn, theta, th0):
|
|
|
|
Nt0 = th0.size
|
|
|
|
Nw = wn.size
|
|
|
|
isFreqDepDir = (Nt0 == Nw)
|
|
|
|
if isFreqDepDir:
|
|
|
|
# frequency dependent spreading and/or
|
|
|
|
# frequency dependent direction
|
|
|
|
# make sure -pi<=TH<pi
|
|
|
|
TH = mod(theta[:, newaxis] - th0[newaxis, :] + pi, 2 * pi) - pi
|
|
|
|
elif Nt0 != 1:
|
|
|
|
raise ValueError(
|
|
|
|
'The length of theta0 must equal to 1 or the length of w')
|
|
|
|
else:
|
|
|
|
TH = mod(theta - th0 + pi, 2 * pi) - pi # make sure -pi<=TH<pi
|
|
|
|
if self.method is not None: # frequency dependent spreading
|
|
|
|
TH = TH[:, newaxis]
|
|
|
|
return TH
|
|
|
|
|
|
|
|
def _get_main_direction(self, wn):
|
|
|
|
if hasattr(self.theta0, '__call__'):
|
|
|
|
return self.theta0(wn.flatten())
|
|
|
|
return atleast_1d(self.theta0).flatten()
|
|
|
|
|
|
|
|
def chk_input(self, theta, w=1, wc=1):
|
|
|
|
""" CHK_INPUT
|
|
|
|
|
|
|
|
CALL [s_par,TH,phi0,Nt] = inputchk(theta,w,wc)
|
|
|
|
"""
|
|
|
|
|
|
|
|
wn = atleast_1d(w / wc)
|
|
|
|
theta = theta.ravel()
|
|
|
|
Nt = len(theta)
|
|
|
|
|
|
|
|
# Make sure theta is from -pi to pi
|
|
|
|
phi0 = 0.0
|
|
|
|
theta = mod(theta + pi, 2 * pi) - pi
|
|
|
|
theta0 = self._get_main_direction(wn)
|
|
|
|
|
|
|
|
TH = self._normalize_angle(wn, theta, theta0)
|
|
|
|
s = self.spread_parameter_s(wn)
|
|
|
|
return s, TH, phi0, Nt
|
|
|
|
|
|
|
|
def cos2s(self, theta, w=1, wc=1): # [D, phi0] =
|
|
|
|
""" COS2S spreading function
|
|
|
|
|
|
|
|
cos2s(theta,w) = N(S)*[cos((theta-theta0)/2)]^(2*S) (0 < S)
|
|
|
|
|
|
|
|
where N() is a normalization factor and S is the spreading parameter
|
|
|
|
possibly dependent on w.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
theta, w : arrays
|
|
|
|
angles and angular frequencies given in radians and rad/s,
|
|
|
|
respectively. Lenghts are Nt and Nw.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
D : 2D array
|
|
|
|
Directonal spreading function. size Nt X Nw.
|
|
|
|
The principal direction of D is always along the x-axis.
|
|
|
|
phi0 : real scalar
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
"""
|
|
|
|
S, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
|
|
|
gammaln = sp.gammaln
|
|
|
|
|
|
|
|
D = (exp(gammaln(S + 1) - gammaln(S + 1.0 / 2.0)) / (2 * sqrt(pi))) * \
|
|
|
|
cos(TH / 2.0) ** (2.0 * S)
|
|
|
|
return D, phi0
|
|
|
|
|
|
|
|
def poisson(self, theta, w=1, wc=1): # [D,phi0] =
|
|
|
|
""" POISSON spreading function
|
|
|
|
|
|
|
|
poisson(theta,w) = N(X)/(1-2*X*cos(theta-theta0)+X^2) (0 < X < 1)
|
|
|
|
|
|
|
|
where N() is a normalization factor and X is the spreading parameter
|
|
|
|
possibly dependent on w.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
theta, w : arrays
|
|
|
|
angles and angular frequencies given in radians and rad/s,
|
|
|
|
respectively. Lenghts are Nt and Nw.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
D : 2D array
|
|
|
|
Directonal spreading function. size Nt X Nw.
|
|
|
|
The principal direction of D is always along the x-axis.
|
|
|
|
phi0 : real scalar
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
"""
|
|
|
|
X, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
|
|
|
D = (1 - X ** 2.) / (1. - (2. * cos(TH) - X) * X) / (2. * pi)
|
|
|
|
return D, phi0
|
|
|
|
|
|
|
|
def wrap_norm(self, theta, w=1, wc=1):
|
|
|
|
""" Wrapped Normal spreading function
|
|
|
|
|
|
|
|
wnormal(theta,w) = N(D1)*[1 +
|
|
|
|
2*sum exp(-(n*D1)^2/2)*cos(n*(theta-theta0))] (0 < D1)
|
|
|
|
|
|
|
|
where N() is a normalization factor and D1 is the spreading parameter
|
|
|
|
possibly dependent on w.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
theta, w : arrays
|
|
|
|
angles and angular frequencies given in radians and rad/s,
|
|
|
|
respectively. Lenghts are Nt and Nw.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
D : 2D array
|
|
|
|
Directonal spreading function. size Nt X Nw.
|
|
|
|
The principal direction of D is always along the x-axis.
|
|
|
|
phi0 : real scalar
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
"""
|
|
|
|
|
|
|
|
par, TH, phi0, Nt = self.chk_input(theta, w, wc)
|
|
|
|
|
|
|
|
D1 = par ** 2. / 2.
|
|
|
|
|
|
|
|
ix = arange(1, Nt)
|
|
|
|
ix2 = ix ** 2
|
|
|
|
Nd2 = D1.size
|
|
|
|
Fcof = vstack((ones((1, Nd2)) / 2, exp(-ix2[:, newaxis] * D1))) / pi
|
|
|
|
|
|
|
|
cor = exp(1j * ix[:, newaxis] * TH[0, :])
|
|
|
|
# correction term to get
|
|
|
|
Pcor = vstack((ones((1, TH.shape[1])), cor))
|
|
|
|
# the correct integration limits
|
|
|
|
Fcof = Fcof * Pcor.conj()
|
|
|
|
D = real(fft(Fcof, axis=0))
|
|
|
|
D[D < 0] = 0
|
|
|
|
return D, phi0
|
|
|
|
|
|
|
|
def sech2(self, theta, w=1, wc=1):
|
|
|
|
"""SECH2 directonal spreading function
|
|
|
|
|
|
|
|
sech2(theta,w) = N(B)*0.5*B*sech(B*(theta-theta0))^2 (0 < B)
|
|
|
|
|
|
|
|
where N() is a normalization factor and X is the spreading parameter
|
|
|
|
possibly dependent on w.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
theta, w : arrays
|
|
|
|
angles and angular frequencies given in radians and rad/s,
|
|
|
|
respectively. Lenghts are Nt and Nw.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
D : 2D array
|
|
|
|
Directonal spreading function. size Nt X Nw.
|
|
|
|
The principal direction of D is always along the x-axis.
|
|
|
|
phi0 : real scalar
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
"""
|
|
|
|
|
|
|
|
B, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
NB = tanh(pi * B) # % Normalization factor.
|
|
|
|
NB = where(NB == 0, 1.0, NB) # Avoid division by zero
|
|
|
|
|
|
|
|
D = 0.5 * B * sech(B * TH) ** 2. / NB
|
|
|
|
return D, phi0
|
|
|
|
|
|
|
|
def mises(self, theta, w=1, wc=1):
|
|
|
|
"""Mises spreading function
|
|
|
|
|
|
|
|
mises(theta,w) = N(K)*exp(K*cos(theta-theta0)) (0 < K)
|
|
|
|
|
|
|
|
where N() is a normalization factor and K is the spreading parameter
|
|
|
|
possibly dependent on w.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
theta, w : arrays
|
|
|
|
angles and angular frequencies given in radians and rad/s,
|
|
|
|
respectively. Lenghts are Nt and Nw.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
D : 2D array
|
|
|
|
Directonal spreading function. size Nt X Nw.
|
|
|
|
The principal direction of D is always along the x-axis.
|
|
|
|
phi0 : real scalar
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
"""
|
|
|
|
|
|
|
|
K, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
|
|
|
D = exp(K * (cos(TH) - 1.)) / (2 * pi * sp.ive(0, K))
|
|
|
|
return D, phi0
|
|
|
|
|
|
|
|
def box(self, theta, w=1, wc=1):
|
|
|
|
""" Box car spreading function
|
|
|
|
|
|
|
|
box(theta,w) = N(A)*I( -A < theta-theta0 < A) (0 < A < pi)
|
|
|
|
|
|
|
|
where N() is a normalization factor and A is the spreading parameter
|
|
|
|
possibly dependent on w.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
theta, w : vectors
|
|
|
|
angles and angular frequencies given in radians and rad/s,
|
|
|
|
respectively. Lenghts are Nt and Nw.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
D : 2D array
|
|
|
|
Directonal spreading function. size Nt X Nw.
|
|
|
|
The principal direction of D is always along the x-axis.
|
|
|
|
phi0 : real scalar
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
"""
|
|
|
|
|
|
|
|
A, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
D = ((-A <= TH) & (TH <= A)) / (2. * A)
|
|
|
|
return D, phi0
|
|
|
|
|
|
|
|
# Local sub functions
|
|
|
|
|
|
|
|
def fourier2distpar(self, r1):
|
|
|
|
""" Fourier coefficients to distribution parameter
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
r1 = corresponding fourier coefficient.
|
|
|
|
type = string defining spreading function
|
|
|
|
'box'
|
|
|
|
'mises'
|
|
|
|
'poisson'
|
|
|
|
'sech2'
|
|
|
|
'wnormal'
|
|
|
|
Returns
|
|
|
|
x = distribution parameter
|
|
|
|
|
|
|
|
The S-parameter of the COS-2S spreading function is used as a measure
|
|
|
|
of spread in MKSPREADING. All the parameters of the other
|
|
|
|
distributions are related to this S-parameter through the first
|
|
|
|
Fourier coefficient, R1, of the directional distribution as follows:
|
|
|
|
R1 = S/(S+1) or S = R1/(1-R1).
|
|
|
|
where
|
|
|
|
Box-car spreading : R1 = sin(A)/A
|
|
|
|
Von Mises spreading: R1 = besseli(1,K)/besseli(0,K),
|
|
|
|
Poisson spreading : R1 = X
|
|
|
|
sech-2 spreading : R1 = pi/(2*B*sinh(pi/(2*B))
|
|
|
|
Wrapped Normal : R1 = exp(-D1^2/2)
|
|
|
|
"""
|
|
|
|
fourierfun = self._fourierdispatch.get(self.type[0])
|
|
|
|
return fourierfun(r1)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def fourier2x(r1):
|
|
|
|
""" Returns the solution of r1 = x.
|
|
|
|
"""
|
|
|
|
X = r1
|
|
|
|
if any(X >= 1):
|
|
|
|
raise ValueError('POISSON spreading: X value must be less than 1')
|
|
|
|
return X
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def fourier2a(r1):
|
|
|
|
""" Returns the solution of R1 = sin(A)/A.
|
|
|
|
"""
|
|
|
|
A0 = flipud(linspace(0, pi + 0.1, 1025))
|
|
|
|
funA = interp1d(sinc(A0 / pi), A0)
|
|
|
|
A0 = funA(r1.ravel())
|
|
|
|
A = asarray(A0)
|
|
|
|
|
|
|
|
# Newton-Raphson
|
|
|
|
da = ones_like(r1)
|
|
|
|
|
|
|
|
max_count = 100
|
|
|
|
ix = flatnonzero(A)
|
|
|
|
for unused_iy in range(max_count):
|
|
|
|
Ai = A[ix]
|
|
|
|
da[ix] = (sin(Ai) - Ai * r1[ix]) / (cos(Ai) - r1[ix])
|
|
|
|
Ai = Ai - da[ix]
|
|
|
|
# Make sure that the current guess is larger than zero.
|
|
|
|
A[ix] = Ai + 0.5 * (da[ix] - Ai) * (Ai <= 0.0)
|
|
|
|
|
|
|
|
ix = flatnonzero(
|
|
|
|
(abs(da) > sqrt(_EPS) * abs(A)) * (abs(da) > sqrt(_EPS)))
|
|
|
|
if ix.size == 0:
|
|
|
|
if any(A > pi):
|
|
|
|
raise ValueError(
|
|
|
|
'BOX-CAR spreading: The A value must be less than pi')
|
|
|
|
return A.clip(min=1e-16, max=pi)
|
|
|
|
|
|
|
|
warnings.warn('Newton raphson method did not converge.')
|
|
|
|
return A.clip(min=1e-16) # Avoid division by zero
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def fourier2k(r1):
|
|
|
|
"""
|
|
|
|
Returns the solution of R1 = besseli(1,K)/besseli(0,K),
|
|
|
|
"""
|
|
|
|
def fun0(x):
|
|
|
|
return sp.ive(1, x) / sp.ive(0, x)
|
|
|
|
|
|
|
|
K0 = hstack((linspace(0, 10, 513), linspace(10.00001, 100)))
|
|
|
|
funK = interp1d(fun0(K0), K0)
|
|
|
|
K0 = funK(r1.ravel())
|
|
|
|
k1 = flatnonzero(isnan(K0))
|
|
|
|
if (k1.size > 0):
|
|
|
|
K0[k1] = 0.0
|
|
|
|
K0[k1] = K0.max()
|
|
|
|
|
|
|
|
ix0 = flatnonzero(r1 != 0.0)
|
|
|
|
K = zeros_like(r1)
|
|
|
|
for ix in ix0:
|
|
|
|
K[ix] = optimize.fsolve(lambda x: fun0(x) - r1[ix], K0[ix])
|
|
|
|
return K
|
|
|
|
|
|
|
|
def fourier2b(self, r1):
|
|
|
|
""" Returns the solution of R1 = pi/(2*B*sinh(pi/(2*B)).
|
|
|
|
"""
|
|
|
|
B0 = hstack((linspace(_EPS, 5, 513), linspace(5.0001, 100)))
|
|
|
|
funB = interp1d(self._r1ofsech2(B0), B0)
|
|
|
|
|
|
|
|
B0 = funB(r1.ravel())
|
|
|
|
k1 = flatnonzero(isnan(B0))
|
|
|
|
if (k1.size > 0):
|
|
|
|
B0[k1] = 0.0
|
|
|
|
B0[k1] = max(B0)
|
|
|
|
|
|
|
|
ix0 = flatnonzero(r1 != 0.0)
|
|
|
|
B = zeros_like(r1)
|
|
|
|
|
|
|
|
def fun(x):
|
|
|
|
return 0.5 * pi / (sinh(.5 * pi / x)) - x * r1[ix]
|
|
|
|
for ix in ix0:
|
|
|
|
B[ix] = abs(optimize.fsolve(fun, B0[ix]))
|
|
|
|
return B
|
|
|
|
|
|
|
|
def fourier2d(self, r1):
|
|
|
|
""" Returns the solution of R1 = exp(-D**2/2).
|
|
|
|
"""
|
|
|
|
r = clip(r1, 0., 1.0)
|
|
|
|
return where(r <= 0, inf, sqrt(-2.0 * log(r)))
|
|
|
|
|
|
|
|
def _init_frequency_dependent_spreading(self, wn):
|
|
|
|
wn_lo, wn_up = self.wn_lo, self.wn_up
|
|
|
|
wn_c = self.wn_c
|
|
|
|
spa, spb = self.s_a, self.s_b
|
|
|
|
ma, mb = self.m_a, self.m_b
|
|
|
|
|
|
|
|
# Mitsuyasu et. al and Hasselman et. al parametrization of
|
|
|
|
# frequency dependent spreading
|
|
|
|
s = where(wn <= wn_c, spa * wn ** ma, spb * wn ** mb)
|
|
|
|
s[wn <= wn_lo] = 0.0
|
|
|
|
return s, spb, wn_up, mb
|
|
|
|
|
|
|
|
def _donelan_spread(self, wn):
|
|
|
|
# Donelan et. al. parametrization for B in SECH-2
|
|
|
|
s, spb, wn_up, mb = self._init_frequency_dependent_spreading(wn)
|
|
|
|
k = flatnonzero(wn_up < wn)
|
|
|
|
s[k] = spb * (wn_up) ** mb
|
|
|
|
# Convert to S-paramater in COS-2S distribution
|
|
|
|
r1 = self.r1ofsech2(s)
|
|
|
|
s = r1 / (1. - r1)
|
|
|
|
return s
|
|
|
|
|
|
|
|
def _banner_spread(self, wn):
|
|
|
|
# Donelan et. al. parametrization for B in SECH-2
|
|
|
|
s, spb, wn_up, mb = self._init_frequency_dependent_spreading(wn)
|
|
|
|
k = flatnonzero(wn_up < wn)
|
|
|
|
# Banner parametrization for B in SECH-2
|
|
|
|
s3m = spb * (wn_up) ** mb
|
|
|
|
s3p = self._donelan(wn_up)
|
|
|
|
# Scale so that parametrization will be continous
|
|
|
|
scale = s3m / s3p
|
|
|
|
s[k] = scale * self.donelan(wn[k])
|
|
|
|
r1 = self.r1ofsech2(s)
|
|
|
|
# Convert to S-paramater in COS-2S distribution
|
|
|
|
s = r1 / (1. - r1)
|
|
|
|
|
|
|
|
return s
|
|
|
|
|
|
|
|
def _mitsuyasu_spread(self, wn):
|
|
|
|
s, _spb, wn_up, _mb = self._init_frequency_dependent_spreading(wn)
|
|
|
|
k = flatnonzero(wn_up < wn)
|
|
|
|
s[k] = 0
|
|
|
|
return s
|
|
|
|
|
|
|
|
def _frequency_independent_spread(self, _wn):
|
|
|
|
"""
|
|
|
|
no frequency dependent spreading,
|
|
|
|
but possible frequency dependent direction
|
|
|
|
"""
|
|
|
|
return atleast_1d(self.s_a)
|
|
|
|
|
|
|
|
def spread_parameter_s(self, wn):
|
|
|
|
""" Return spread parameter, S, equivalent for the COS2S function
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
wn : array_like
|
|
|
|
normalized frequencies.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
S : ndarray
|
|
|
|
spread parameter of COS2S functions
|
|
|
|
"""
|
|
|
|
|
|
|
|
spread = dict(b=self._banner_spread,
|
|
|
|
d=self._donelan_spread,
|
|
|
|
m=self._mitsuyasu_spread
|
|
|
|
).get(self.method[0],
|
|
|
|
self._frequency_independent_spread)
|
|
|
|
s = spread(wn)
|
|
|
|
|
|
|
|
if any(s < 0):
|
|
|
|
raise ValueError('The COS2S spread parameter, S(w), ' +
|
|
|
|
'value must be larger than 0')
|
|
|
|
if self.type[0] == 'c': # cos2s
|
|
|
|
s_par = s
|
|
|
|
else:
|
|
|
|
# First Fourier coefficient of the directional spreading function.
|
|
|
|
r1 = abs(s / (s + 1))
|
|
|
|
# Find distribution parameter from first Fourier coefficient.
|
|
|
|
s_par = self.fourier2distpar(r1)
|
|
|
|
if self.method is not None:
|
|
|
|
s_par = s_par[newaxis, :]
|
|
|
|
return s_par
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _donelan(wn):
|
|
|
|
""" High frequency decay of B of sech2 paramater
|
|
|
|
"""
|
|
|
|
return 10.0 ** (-0.4 + 0.8393 * exp(-0.567 * log(wn ** 2)))
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _r1ofsech2(B):
|
|
|
|
""" R1OFSECH2 Computes R1 = pi./(2*B.*sinh(pi./(2*B)))
|
|
|
|
"""
|
|
|
|
realmax = finfo(float).max
|
|
|
|
tiny = 1. / realmax
|
|
|
|
x = clip(2. * B, tiny, realmax)
|
|
|
|
xk = pi / x
|
|
|
|
return where(x < 100., xk / sinh(xk),
|
|
|
|
-2. * xk / (exp(xk) * expm1(-2. * xk)))
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _check_theta(theta):
|
|
|
|
L = abs(theta[-1] - theta[0])
|
|
|
|
if abs(L - 2 * np.pi) > _EPS:
|
|
|
|
raise ValueError('theta must cover all angles -pi -> pi')
|
|
|
|
nt = len(theta)
|
|
|
|
if nt < 40:
|
|
|
|
warnings.warn('Number of angles is less than 40. ' +
|
|
|
|
'Spreading too sparsely sampled!')
|
|
|
|
|
|
|
|
def tospecdata2d(self, specdata, theta=None, wc=0.52, nt=51):
|
|
|
|
"""
|
|
|
|
MKDSPEC Make a directional spectrum
|
|
|
|
frequency spectrum times spreading function
|
|
|
|
|
|
|
|
CALL: Snew=mkdspec(S,D,plotflag)
|
|
|
|
|
|
|
|
Snew = directional spectrum (spectrum struct)
|
|
|
|
S = frequency spectrum (spectrum struct)
|
|
|
|
(default jonswap)
|
|
|
|
D = spreading function (special struct)
|
|
|
|
(default spreading([],'cos2s'))
|
|
|
|
|
|
|
|
Creates a directional spectrum through multiplication of a frequency
|
|
|
|
spectrum and a spreading function: S(w,theta)=S(w)*D(w,theta)
|
|
|
|
|
|
|
|
The spreading structure must contain the following fields:
|
|
|
|
.S (size [np 1] or [np nf]) and .theta (length np)
|
|
|
|
optional fields: .w (length nf), .note (memo) .phi (rotation-azymuth)
|
|
|
|
|
|
|
|
NB! S.w and D.w (if any) must be identical.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import wafo.spectrum.models as wsm
|
|
|
|
>>> S = wsm.Jonswap().tospecdata()
|
|
|
|
>>> D = wsm.Spreading('cos2s')
|
|
|
|
>>> SD = D.tospecdata2d(S)
|
|
|
|
|
|
|
|
h = SD.plot()
|
|
|
|
|
|
|
|
See also spreading, rotspec, jonswap, torsethaugen
|
|
|
|
"""
|
|
|
|
if theta is None:
|
|
|
|
theta = np.linspace(-np.pi, np.pi, nt)
|
|
|
|
|
|
|
|
self._check_theta(theta)
|
|
|
|
|
|
|
|
w = specdata.args
|
|
|
|
S = specdata.data
|
|
|
|
D, phi0 = self(theta, w=w, wc=wc)
|
|
|
|
if D.ndim != 2: # frequency dependent spreading
|
|
|
|
D = D[:, None]
|
|
|
|
SD = D * S[None, :]
|
|
|
|
|
|
|
|
Snew = SpecData2D(SD, (w, theta), type='dir',
|
|
|
|
freqtype=specdata.freqtype)
|
|
|
|
Snew.tr = specdata.tr
|
|
|
|
Snew.h = specdata.h
|
|
|
|
Snew.phi = phi0
|
|
|
|
Snew.norm = specdata.norm
|
|
|
|
# Snew.note = specdata.note + ', spreading: %s' % self.type
|
|
|
|
return Snew
|
|
|
|
|
|
|
|
|
|
|
|
def _test_some_spectra():
|
|
|
|
S = Jonswap()
|
|
|
|
|
|
|
|
w = arange(3.0)
|
|
|
|
S(w) * phi1(w, 30.0)
|
|
|
|
S1 = S.tospecdata(w)
|
|
|
|
S1.plot()
|
|
|
|
|
|
|
|
import pylab as plb
|
|
|
|
w = plb.linspace(0, 2.5)
|
|
|
|
S = Tmaspec(h=10, gamma=1) # Bretschneider spectrum Hm0=7, Tp=11
|
|
|
|
plb.plot(w, S(w))
|
|
|
|
plb.plot(w, S(w, h=21))
|
|
|
|
plb.plot(w, S(w, h=42))
|
|
|
|
plb.show()
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
w, th = plb.ogrid[0:4, 0:6]
|
|
|
|
k, k2 = w2k(w, th)
|
|
|
|
|
|
|
|
plb.plot(w, k, w, k2)
|
|
|
|
|
|
|
|
plb.show()
|
|
|
|
|
|
|
|
plb.close('all')
|
|
|
|
w = plb.linspace(0, 2, 100)
|
|
|
|
S = Torsethaugen(Hm0=6, Tp=8)
|
|
|
|
plb.plot(w, S(w), w, S.wind(w), w, S.swell(w))
|
|
|
|
|
|
|
|
S1 = Jonswap(Hm0=7, Tp=11, gamma=1)
|
|
|
|
w = plb.linspace(0, 2, 100)
|
|
|
|
plb.plot(w, S1(w))
|
|
|
|
plb.show()
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
Hm0 = plb.arange(1, 11)
|
|
|
|
Tp = plb.linspace(2, 16)
|
|
|
|
T, H = plb.meshgrid(Tp, Hm0)
|
|
|
|
gam = jonswap_peakfact(H, T)
|
|
|
|
plb.plot(Tp, gam.T)
|
|
|
|
plb.xlabel('Tp [s]')
|
|
|
|
plb.ylabel('Peakedness parameter')
|
|
|
|
|
|
|
|
Hm0 = plb.linspace(1, 20)
|
|
|
|
Tp = Hm0
|
|
|
|
[T, H] = plb.meshgrid(Tp, Hm0)
|
|
|
|
gam = jonswap_peakfact(H, T)
|
|
|
|
v = plb.arange(0, 8)
|
|
|
|
plb.contourf(Tp, Hm0, gam, v)
|
|
|
|
plb.colorbar()
|
|
|
|
plb.show()
|
|
|
|
plb.close('all')
|
|
|
|
|
|
|
|
|
|
|
|
def _test_spreading():
|
|
|
|
import pylab as plb
|
|
|
|
pi = plb.pi
|
|
|
|
w = plb.linspace(0, 3, 257)
|
|
|
|
theta = plb.linspace(-pi, pi, 129)
|
|
|
|
|
|
|
|
D2 = Spreading('cos2s', theta0=lambda w: w * plb.pi / 6.0)
|
|
|
|
d1 = D2(theta, w)[0]
|
|
|
|
plb.contour(d1.squeeze())
|
|
|
|
|
|
|
|
pi = plb.pi
|
|
|
|
D = Spreading('wrap_norm', s_a=10.0)
|
|
|
|
|
|
|
|
w = plb.linspace(0, 3, 257)
|
|
|
|
theta = plb.linspace(-pi, pi, 129)
|
|
|
|
d1 = D(theta, w)
|
|
|
|
plb.contour(d1[0])
|
|
|
|
plb.show()
|
|
|
|
|
|
|
|
|
|
|
|
def test_docstrings():
|
|
|
|
import doctest
|
|
|
|
print('Testing docstrings in %s' % __file__)
|
|
|
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
if False: # True: #
|
|
|
|
_test_some_spectra()
|
|
|
|
else:
|
|
|
|
test_docstrings()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|