You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

692 lines
25 KiB
Python

from six import iteritems
from numpy.testing import (run_module_suite, assert_equal, assert_almost_equal,
assert_array_equal, assert_array_almost_equal,
TestCase, assert_, assert_raises,)
import numpy as np
from numpy import array, cos, exp, linspace, pi, sin, diff, arange, ones
from wafo.data import sea
import wafo
from wafo.misc import (JITImport, Bunch, detrendma, DotDict, findcross, ecross,
findextrema, findrfc, rfcfilter, findtp, findtc,
findrfc_astm,
findoutliers, common_shape, argsreduce, stirlerr,
getshipchar, betaloge,
gravity, nextpow2, discretize, polar2cart,
cart2polar, tranproc,
rotation_matrix, rotate_2d, spaceline,
args_flat, sub2index, index2sub, piecewise,
parse_kwargs)
def test_disufq():
d_inf = [[0., -144.3090093, -269.37681737, -375.20342419, -461.78882978,
-529.13303412, -577.23603722, -606.09783908, -615.7184397,
-606.09783908, -577.23603722, -529.13303412, -461.78882978,
-375.20342419, -269.37681737, -144.3090093, 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0.00000000e+00, 0.00000000e+00, 5.65917684e-01, 2.82958842e+00,
7.92284757e+00, 1.69775305e+01, 3.11254726e+01, 5.14985092e+01,
7.92284757e+01, 1.15447207e+02, 1.61286540e+02, 2.17878308e+02,
2.86354348e+02, 3.67846494e+02, 4.63486583e+02, 5.74406449e+02,
7.01737928e+02, 8.46612855e+02, 8.46046937e+02, 8.43783266e+02,
8.38690007e+02, 8.29635324e+02, 8.15487382e+02, 7.95114345e+02,
7.67384379e+02, 7.31165647e+02, 6.85326315e+02, 6.28734546e+02,
5.60258507e+02, 4.78766360e+02, 3.83126272e+02, 2.72206406e+02]]
# depth = 10
d_10 = [[-3.43299449, -144.58425201, -269.97386241, -376.2314858,
-463.35503499, -531.34450329, -580.19988853, -609.92118976,
-620.50840653, -611.96153858, -584.28058577, -537.46554798,
-471.51642516, -386.43321726, -282.21592426, -158.8601612, 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0.87964472, 3.30251807, 8.7088916, 18.1892694,
32.87215973, 53.88831991, 82.36912798,
119.44619211, 166.25122204, 223.91597801, 293.57224772,
376.35183479, 473.38655268, 585.80822113, 714.74866403,
861.33970818, 846.05101255, 843.78326617, 838.69000702,
829.63532408, 815.48738199, 795.11434539, 767.38437889,
731.16564714, 685.32631478, 628.73454642, 560.25850671,
478.76636028, 383.12627176, 272.20640579]]
g = 9.81
n = 32
amp = np.ones(n) + 1j * 1
f = np.linspace(0., 3.0, n // 2 + 1)
nmin = 2
nmax = n // 2 + 1
cases = 1
ns = n
w = 2.0 * pi * f
from wafo import c_library
d_truth = [d_10, d_inf]
for i, water_depth in enumerate([10.0, 10000000]):
kw = wafo.wave_theory.dispersion_relation.w2k(w, 0., water_depth, g)[0]
data2 = wafo.numba_misc.disufq(amp.real, amp.imag, w, kw, water_depth,
g, nmin, nmax, cases, ns)
data = c_library.disufq(amp.real, amp.imag, w, kw, water_depth, g,
nmin, nmax, cases, ns)
# print(data[0])
# print(data[1])
# deep water
assert_array_almost_equal(data, data2)
assert_array_almost_equal(data, d_truth[i])
# assert(False)
def test_JITImport():
np = JITImport('numpy')
assert_equal(1.0, np.exp(0))
def test_bunch():
d = Bunch(test1=1, test2=3)
assert_equal(1, getattr(d, 'test1'))
assert_equal(3, getattr(d, 'test2'))
def test_dotdict():
d = DotDict(test1=1, test2=3)
assert_equal(1, d.test1)
assert_equal(3, d.test2)
def test_detrendma():
x = linspace(0, 1, 200)
y = exp(x) + 0.1 * cos(20 * 2 * pi * x)
y0 = detrendma(y, 20)
tr = y - y0
print(y0[::40])
print(tr[::40])
assert_array_almost_equal(
y0[::40], [-0.01058152, 0.09386986, 0.0903801, 0.08510006,
0.07803487])
assert_array_almost_equal(tr[::40], [1.11058152, 1.22796459, 1.50127309,
1.8354286, 2.24397967])
def test_findcross_and_ecross():
assert_array_equal(findcross([0, 0, 1, -1, 1], 0), np.array([1, 2, 3]))
assert_array_equal(findcross([0, 1, -1, 1], 0), np.array([0, 1, 2]))
t = linspace(0, 7 * pi, 250)
x = sin(t)
ind = findcross(x, 0.75)
assert_array_equal(ind, np.array([9, 25, 80, 97, 151, 168, 223, 239]))
t0 = ecross(t, x, ind, 0.75)
assert_array_almost_equal(t0, np.array([0.84910514, 2.2933879, 7.13205663,
8.57630119, 13.41484739,
14.85909194,
19.69776067, 21.14204343]))
def test_findextrema():
t = linspace(0, 7 * pi, 250)
x = sin(t)
ind = findextrema(x)
assert_array_almost_equal(ind, np.array([18, 53, 89, 125, 160, 196, 231]))
def test_findrfc():
t = linspace(0, 7 * pi, 250)
x = sin(t) + 0.1 * sin(50 * t)
ind = findextrema(x)
assert_array_almost_equal(
ind,
np.array(
[1, 3, 4, 6, 7, 9, 11, 13, 14, 16, 18, 19, 21,
23, 25, 26, 28, 29, 31, 33, 35, 36, 38, 39, 41, 43,
45, 46, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 65,
67, 68, 70, 71, 73, 75, 77, 78, 80, 81, 83, 85, 87,
88, 90, 92, 93, 95, 97, 99, 100, 102, 103, 105, 107, 109,
110, 112, 113, 115, 117, 119, 120, 122, 124, 125, 127, 129, 131,
132, 134, 135, 137, 139, 141, 142, 144, 145, 147, 149, 151, 152,
154, 156, 157, 159, 161, 162, 164, 166, 167, 169, 171, 173, 174,
176, 177, 179, 181, 183, 184, 186, 187, 189, 191, 193, 194, 196,
198, 199, 201, 203, 205, 206, 208, 209, 211, 213, 215, 216, 218,
219, 221, 223, 225, 226, 228, 230, 231, 233, 235, 237, 238, 240,
241, 243, 245, 247, 248]))
_ti, tp = t[ind], x[ind]
for method in ['clib', 2, 1, 0]:
ind1 = findrfc(tp, 0.3, method=method)
if method in [1, 0]:
ind1 = ind1[:-1]
assert_array_almost_equal(
ind1,
np.array([0, 9, 32, 53, 74, 95, 116, 137]))
assert_array_almost_equal(
tp[ind1],
np.array(
[-0.00743352, 1.08753972, -1.07206545, 1.09550837, -1.07940458,
1.07849396, -1.0995006, 1.08094452]))
def test_rfcfilter():
# 1. Filtered signal y is the turning points of x.
x = sea()
y = rfcfilter(x[:, 1], h=0.0, method=1)
assert_array_almost_equal(
y[0:5],
np.array([-1.2004945, 0.83950546, -0.09049454,
-0.02049454, -0.09049454]))
# 2. This removes all rainflow cycles with range less than 0.5.
y1 = rfcfilter(x[:, 1], h=0.5, method=0)
assert_array_almost_equal(
y1[0:5],
np.array([-1.2004945, 0.83950546, -0.43049454,
0.34950546, -0.51049454]))
# return
t = linspace(0, 7 * pi, 250)
x = sin(t) + 0.1 * sin(50 * t)
ind = findextrema(x)
assert_array_almost_equal(
ind,
np.array(
[1, 3, 4, 6, 7, 9, 11, 13, 14, 16, 18, 19, 21,
23, 25, 26, 28, 29, 31, 33, 35, 36, 38, 39, 41, 43,
45, 46, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 65,
67, 68, 70, 71, 73, 75, 77, 78, 80, 81, 83, 85, 87,
88, 90, 92, 93, 95, 97, 99, 100, 102, 103, 105, 107, 109,
110, 112, 113, 115, 117, 119, 120, 122, 124, 125, 127, 129, 131,
132, 134, 135, 137, 139, 141, 142, 144, 145, 147, 149, 151, 152,
154, 156, 157, 159, 161, 162, 164, 166, 167, 169, 171, 173, 174,
176, 177, 179, 181, 183, 184, 186, 187, 189, 191, 193, 194, 196,
198, 199, 201, 203, 205, 206, 208, 209, 211, 213, 215, 216, 218,
219, 221, 223, 225, 226, 228, 230, 231, 233, 235, 237, 238, 240,
241, 243, 245, 247, 248]))
_ti, tp = t[ind], x[ind]
tp03 = rfcfilter(tp, 0.3)
assert_array_almost_equal(
tp03,
np.array(
[-0.00743352, 1.08753972, -1.07206545, 1.09550837, -1.07940458,
1.07849396, -1.0995006, 1.08094452, 0.11983423]))
tp3 = findrfc_astm(tp)
assert_array_almost_equal((77, 3), tp3.shape)
# print(tp3[-5:])
assert_array_almost_equal(tp3[-5:],
[[0.01552179, 0.42313414, 1.],
[1.09750448, -0.00199612, 0.5],
[1.09022256, -0.00927804, 0.5],
[0.48055514, 0.60038938, 0.5],
[0.03200274, 0.15183698, 0.5]])
assert_array_almost_equal(tp3[:5],
[[0.03578165, 0.28906389, 1.],
[0.03602834, 0.56726584, 1.],
[0.03816623, 0.76461446, 1.],
[0.0638364, 0.92381302, 1.],
[0.07759006, 0.99628738, 1.]])
# assert(False)
def test_findtp():
x = sea()
x1 = x[0:200, :]
itp = findtp(x1[:, 1], 0, 'Mw')
itph = findtp(x1[:, 1], 0.3, 'Mw')
assert_array_almost_equal(
itp,
np.array(
[11, 21, 22, 24, 26, 28, 31, 39, 43, 45, 47, 51, 56,
64, 70, 78, 82, 84, 89, 94, 101, 108, 119, 131, 141, 148,
149, 150, 159, 173, 184, 190, 199]))
assert_array_almost_equal(
itph,
np.array(
[11, 28, 31, 39, 47, 51, 56, 64, 70, 78, 89, 94, 101,
108, 119, 131, 141, 148, 159, 173, 184, 190, 199]))
def test_findtc():
x = sea()
x1 = x[0:200, :]
itc, iv = findtc(x1[:, 1], 0, 'dw')
assert_array_almost_equal(
itc,
np.array(
[28, 31, 39, 56, 64, 69, 78, 82, 83, 89, 94, 101, 108,
119, 131, 140, 148, 159, 173, 184]))
assert_array_almost_equal(
iv,
np.array(
[19, 29, 34, 53, 60, 67, 76, 81, 82, 84, 90, 99, 103,
112, 127, 137, 143, 154, 166, 180, 185]))
def test_findoutliers():
xx = sea()
dt = diff(xx[:2, 0])
dcrit = 5 * dt
ddcrit = 9.81 / 2 * dt * dt
zcrit = 0
[inds, indg] = findoutliers(xx[:, 1], zcrit, dcrit, ddcrit, verbose=False)
assert_array_almost_equal(inds[np.r_[0, 1, 2, -3, -2, -1]],
np.array([6, 7, 8, 9509, 9510, 9511]))
assert_array_almost_equal(indg[np.r_[0, 1, 2, -3, -2, -1]],
np.array([0, 1, 2, 9521, 9522, 9523]))
def test_common_shape():
A = np.ones((4, 1))
B = 2
C = np.ones((1, 5)) * 5
assert_array_equal(common_shape(A, B, C), (4, 5))
assert_array_equal(common_shape(A, B, C, shape=(3, 4, 1)), (3, 4, 5))
A = np.ones((4, 1))
B = 2
C = np.ones((1, 5)) * 5
assert_array_equal(common_shape(A, B, C), (4, 5))
assert_array_equal(common_shape(A, B, C, shape=(3, 4, 1)), (3, 4, 5))
def test_argsreduce():
A = np.reshape(linspace(0, 19, 20), (4, 5))
B = 2
C = range(5)
cond = np.ones(A.shape)
[_A1, B1, _C1] = argsreduce(cond, A, B, C)
assert_equal(B1.shape, (20,))
cond[2, :] = 0
[A2, B2, C2] = argsreduce(cond, A, B, C)
assert_equal(B2.shape, (15,))
assert_array_equal(A2,
np.array([0., 1., 2., 3., 4., 5., 6., 7.,
8., 9., 15., 16., 17., 18., 19.]))
assert_array_equal(
B2, np.array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]))
assert_array_equal(
C2, np.array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4]))
def test_stirlerr():
assert_array_almost_equal(stirlerr(range(5)),
np.array([np.inf, 0.08106147, 0.0413407,
0.02767793, 0.02079067]))
def test_parse_kwargs():
opt = dict(arg1=1, arg2=3)
opt = parse_kwargs(opt, arg1=5)
assert(opt['arg1'] == 5)
assert(opt['arg2'] == 3)
opt2 = dict(arg3=15)
opt = parse_kwargs(opt, **opt2)
assert('arg3' not in opt)
def test_getshipchar():
sc = getshipchar(service_speed=10)
true_sc = dict(beam=29,
beamSTD=2.9,
draught=9.6,
draughtSTD=2.112,
length=216,
lengthSTD=2.011309883194276,
max_deadweight=30969,
max_deadweightSTD=3096.9,
propeller_diameter=6.761165385916601,
propeller_diameterSTD=0.20267047566705432,
service_speed=10,
service_speedSTD=0)
for name, val in iteritems(true_sc):
assert_almost_equal(val, sc[name])
def test_betaloge():
assert_array_almost_equal(betaloge(3, arange(4)),
np.array([np.inf, -1.09861229, -2.48490665,
-3.40119738]))
def test_gravity():
phi = linspace(0, 45, 5)
assert_array_almost_equal(gravity(phi),
np.array([9.78049, 9.78245014, 9.78803583,
9.79640552, 9.80629387]))
def test_nextpow2():
assert_equal(nextpow2(10), 4)
assert_equal(nextpow2(np.arange(5)), 3)
def test_discretize():
x, y = discretize(np.cos, 0, np.pi, tol=0.01)
assert_array_almost_equal(
x,
np.array(
[0., 0.19634954, 0.39269908, 0.58904862, 0.78539816,
0.9817477, 1.17809725, 1.37444679, 1.57079633, 1.76714587,
1.96349541, 2.15984495, 2.35619449, 2.55254403, 2.74889357,
2.94524311, 3.14159265]))
assert_array_almost_equal(
y, np.array([1.00000000e+00, 9.80785280e-01,
9.23879533e-01,
8.31469612e-01, 7.07106781e-01, 5.55570233e-01,
3.82683432e-01, 1.95090322e-01, 6.12323400e-17,
-1.95090322e-01, -3.82683432e-01, -5.55570233e-01,
-7.07106781e-01, -8.31469612e-01, -9.23879533e-01,
-9.80785280e-01, -1.00000000e+00]))
def test_discretize_adaptive():
x, y = discretize(np.cos, 0, np.pi, method='adaptive')
assert_array_almost_equal(
x,
np.array(
[0., 0.19634954, 0.39269908, 0.58904862, 0.78539816,
0.9817477, 1.17809725, 1.37444679, 1.57079633, 1.76714587,
1.96349541, 2.15984495, 2.35619449, 2.55254403, 2.74889357,
2.94524311, 3.14159265]))
assert_array_almost_equal(
y,
np.array(
[1.00000000e+00, 9.80785280e-01, 9.23879533e-01,
8.31469612e-01, 7.07106781e-01, 5.55570233e-01,
3.82683432e-01, 1.95090322e-01, 6.12323400e-17,
-1.95090322e-01, -3.82683432e-01, -5.55570233e-01,
-7.07106781e-01, -8.31469612e-01, -9.23879533e-01,
-9.80785280e-01, -1.00000000e+00]))
def test_polar2cart_n_cart2polar():
r = 5
t = linspace(0, pi, 20)
x, y = polar2cart(t, r)
assert_array_almost_equal(
x,
np.array(
[5., 4.93180652, 4.72908621, 4.39736876, 3.94570255,
3.38640786, 2.73474079, 2.00847712, 1.22742744, 0.41289673,
-0.41289673, -1.22742744, -2.00847712, -2.73474079, -3.38640786,
-3.94570255, -4.39736876, -4.72908621, -4.93180652, -5.]))
assert_array_almost_equal(
y,
np.array(
[0.00000000e+00, 8.22972951e-01, 1.62349735e+00,
2.37973697e+00, 3.07106356e+00, 3.67861955e+00,
4.18583239e+00, 4.57886663e+00, 4.84700133e+00,
4.98292247e+00, 4.98292247e+00, 4.84700133e+00,
4.57886663e+00, 4.18583239e+00, 3.67861955e+00,
3.07106356e+00, 2.37973697e+00, 1.62349735e+00,
8.22972951e-01, 6.12323400e-16]))
ti, ri = cart2polar(x, y)
assert_array_almost_equal(
ti,
np.array(
[0., 0.16534698, 0.33069396, 0.49604095, 0.66138793,
0.82673491, 0.99208189, 1.15742887, 1.32277585, 1.48812284,
1.65346982, 1.8188168, 1.98416378, 2.14951076, 2.31485774,
2.48020473, 2.64555171, 2.81089869, 2.97624567, 3.14159265]))
assert_array_almost_equal(
ri,
np.array(
[5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5.,
5., 5., 5., 5., 5., 5., 5.]))
def test_tranproc():
import wafo.transform.models as wtm
tr = wtm.TrHermite()
x = linspace(-5, 5, 501)
g = tr(x)
y0, y1 = tranproc(x, g, range(5), ones(5))
assert_array_almost_equal(
y0,
np.array([0.02659612, 1.00115284, 1.92872532,
2.81453257, 3.66292878]))
assert_array_almost_equal(
y1,
np.array([1.00005295, 0.9501118, 0.90589954,
0.86643821, 0.83096482]))
class TestPiecewise(TestCase):
def test_condition_is_single_bool_list(self):
assert_raises(ValueError, piecewise, [True, False], [1], [0, 0])
def test_condition_is_list_of_single_bool_list(self):
x = piecewise([[True, False]], [1], [0, 0])
assert_array_equal(x, [1, 0])
def test_conditions_is_list_of_single_bool_array(self):
x = piecewise([np.array([True, False])], [1], [0, 0])
assert_array_equal(x, [1, 0])
def test_condition_is_single_int_array(self):
assert_raises(ValueError, piecewise, np.array([1, 0]), [1], [0, 0])
def test_condition_is_list_of_single_int_array(self):
x = piecewise([np.array([1, 0])], [1], [0, 0])
assert_array_equal(x, [1, 0])
def test_simple(self):
x = piecewise([[False, True]], [lambda x:-1], [0, 0])
assert_array_equal(x, [0, -1])
x = piecewise([[True, False], [False, True]], [3, 4], [1, 2])
assert_array_equal(x, [3, 4])
def test_default(self):
# No value specified for x[1], should be 0
x = piecewise([[True, False]], [2], [1, 2],)
assert_array_equal(x, [2, 0])
# Should set x[1] to 3
x = piecewise([[True, False]], [2, 3], [1, 2])
assert_array_equal(x, [2, 3])
def test_0d(self):
x = np.array(3)
y = piecewise([x > 3], [4, 0], x)
assert_(y.ndim == 0)
assert_(y == 0)
x = 5
y = piecewise([[True], [False]], [1, 0], x)
assert_(y == 1)
assert_(y.ndim == 0)
def test_abs_function(self):
x = np.linspace(-2.5, 2.5, 6)
vals = piecewise([x < 0, x >= 0], [lambda x: -x, lambda x: x], (x,))
assert_array_equal(vals,
[2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
def test_abs_function_with_scalar(self):
x = np.array(-2.5)
vals = piecewise([x < 0, x >= 0], [lambda x: -x, lambda x: x], (x,))
assert_(vals == 2.5)
def test_otherwise_condition(self):
x = np.linspace(-2.5, 2.5, 6)
vals = piecewise([x < 0, ], [lambda x: -x, lambda x: x], (x,))
assert_array_equal(vals, [2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
def test_passing_further_args_to_fun(self):
def fun0(x, y, scale=1.):
return -x * y / scale
def fun1(x, y, scale=1.):
return x * y / scale
x = np.linspace(-2.5, 2.5, 6)
vals = piecewise([x < 0, ], [fun0, fun1], (x,), args=(2.,), scale=2.)
assert_array_equal(vals, [2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
def test_step_function(self):
x = np.linspace(-2.5, 2.5, 6)
vals = piecewise([x < 0, x >= 0], [-1, 1], x)
assert_array_equal(vals, [-1., -1., -1., 1., 1., 1.])
def test_step_function_with_scalar(self):
x = 1
vals = piecewise([x < 0, x >= 0], [-1, 1], x)
assert_(vals == 1)
def test_function_with_two_args(self):
x = np.linspace(-2, 2, 5)
X, Y = np.meshgrid(x, x)
vals = piecewise(
[X * Y < 0, ], [lambda x, y: -x * y, lambda x, y: x * y], (X, Y))
assert_array_equal(vals, [[4., 2., -0., 2., 4.],
[2., 1., -0., 1., 2.],
[-0., -0., 0., 0., 0.],
[2., 1., 0., 1., 2.],
[4., 2., 0., 2., 4.]])
def test_fill_value_and_function_with_two_args(self):
x = np.linspace(-2, 2, 5)
X, Y = np.meshgrid(x, x)
vals = piecewise([X * Y < -0.5, X * Y > 0.5],
[lambda x, y: -x * y, lambda x, y: x * y], (X, Y),
7 years ago
fillvalue=np.nan)
nan = np.nan
assert_array_equal(vals, [[4., 2., nan, 2., 4.],
[2., 1., nan, 1., 2.],
[nan, nan, nan, nan, nan],
[2., 1., nan, 1., 2.],
[4., 2., nan, 2., 4.]])
def test_fill_value2_and_function_with_two_args(self):
x = np.linspace(-2, 2, 5)
X, Y = np.meshgrid(x, x)
vals = piecewise([X * Y < -0.5, X * Y > 0.5],
9 years ago
[lambda x, y: -x * y, lambda x, y: x * y, np.nan],
(X, Y))
nan = np.nan
assert_array_equal(vals, [[4., 2., nan, 2., 4.],
[2., 1., nan, 1., 2.],
[nan, nan, nan, nan, nan],
[2., 1., nan, 1., 2.],
[4., 2., nan, 2., 4.]])
class TestRotationMatrix(TestCase):
def test_h0_p0_r0(self):
vals = rotation_matrix(heading=0, pitch=0, roll=0).tolist()
truevals = [[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]
self.assertListEqual(vals, truevals)
def test_h180_p0_r0(self):
vals = rotation_matrix(heading=180, pitch=0, roll=0).tolist()
truevals = [[-1.0, -1.2246467991473532e-16, 0.0],
[1.2246467991473532e-16, -1.0, 0.0],
[-0.0, 0.0, 1.0]]
self.assertListEqual(vals, truevals)
def test_h0_p180_r0(self):
vals = rotation_matrix(heading=0, pitch=180, roll=0).tolist()
truevals = [[-1.0, 0.0, 1.2246467991473532e-16],
[-0.0, 1.0, 0.0],
[-1.2246467991473532e-16, -0.0, -1.0]]
self.assertListEqual(vals, truevals)
def test_h0_p0_r180(self):
vals = rotation_matrix(heading=0, pitch=180, roll=0).tolist()
truevals = [[-1.0, 0.0, 1.2246467991473532e-16],
[-0.0, 1.0, 0.0],
[-1.2246467991473532e-16, -0.0, -1.0]]
self.assertListEqual(vals, truevals)
class TestRotate2d(TestCase):
def test_rotate_0deg(self):
vals = list(rotate_2d(x=1, y=0, angle_deg=0))
truevals = [1.0, 0.0]
self.assertListEqual(vals, truevals)
def test_rotate_90deg(self):
vals = list(rotate_2d(x=1, y=0, angle_deg=90))
truevals = [6.123233995736766e-17, 1.0]
self.assertListEqual(vals, truevals)
def test_rotate_180deg(self):
vals = list(rotate_2d(x=1, y=0, angle_deg=180))
truevals = [-1.0, 1.2246467991473532e-16]
self.assertListEqual(vals, truevals)
def test_rotate_360deg(self):
vals = list(rotate_2d(x=1, y=0, angle_deg=360))
truevals = [1.0, -2.4492935982947064e-16]
self.assertListEqual(vals, truevals)
class TestSpaceLine(TestCase):
def test_space_line(self):
vals = spaceline((2, 0, 0), (3, 0, 0), num=5).tolist()
truevals = [[2., 0., 0.],
[2.25, 0., 0.],
[2.5, 0., 0.],
[2.75, 0., 0.],
[3., 0., 0.]]
self.assertListEqual(vals, truevals)
class TestArgsFlat(TestCase):
def test_1_vector_and_2_scalar_args(self):
x = [1, 2, 3]
pos, c_shape = args_flat(x, 2, 3)
truepos = [[1, 2, 3],
[2, 2, 3],
[3, 2, 3]]
truec_shape = [3, ]
self.assertListEqual(pos.tolist(), truepos)
self.assertListEqual(list(c_shape), truec_shape)
def test_1_vector_args(self):
pos1, c_shape1 = args_flat([1, 2, 3])
truepos1 = [[1, 2, 3]]
truec_shape1 = None
self.assertListEqual(pos1.tolist(), truepos1)
self.assertIs(c_shape1, truec_shape1)
def test_3_scalar_args(self):
pos1, c_shape1 = args_flat(1, 2, 3)
truepos1 = [[1, 2, 3]]
truec_shape1 = []
self.assertListEqual(pos1.tolist(), truepos1)
self.assertListEqual(list(c_shape1), truec_shape1)
def test_3_scalar_args_version2(self):
pos1, c_shape1 = args_flat([1], 2, 3)
truepos1 = [[1, 2, 3]]
truec_shape1 = [1, ]
self.assertListEqual(pos1.tolist(), truepos1)
self.assertListEqual(list(c_shape1), truec_shape1)
class TestSub2index2Sub(TestCase):
def test_sub2index_and_index2sub(self):
shape = (3, 3, 4)
a = np.arange(np.prod(shape)).reshape(shape)
trueval = a[1, 2, 3]
order = 'C'
i = sub2index(shape, 1, 2, 3, order=order)
self.assertEquals(i, 23)
val = a.ravel(order)[i]
self.assertEquals(val, trueval)
sub = index2sub(shape, i, order=order)
for j, true_sub_j in enumerate([1, 2, 3]):
self.assertEquals(sub[j].tolist(), true_sub_j)
if __name__ == '__main__':
run_module_suite()