|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from numpy import pi, sqrt, ones, zeros
|
|
|
|
from scipy import integrate as intg
|
|
|
|
import scipy.special.orthogonal as ort
|
|
|
|
from scipy import special as sp
|
|
|
|
|
|
|
|
from scipy.integrate import simps, trapz
|
|
|
|
from wafo.plotbackend import plotbackend as plt
|
|
|
|
from wafo.demos import humps
|
|
|
|
from wafo.misc import dea3
|
|
|
|
from wafo.dctpack import dct
|
|
|
|
# from pychebfun import Chebfun
|
|
|
|
|
|
|
|
_EPS = np.finfo(float).eps
|
|
|
|
_NODES_AND_WEIGHTS = {}
|
|
|
|
|
|
|
|
__all__ = ['dea3', 'clencurt', 'romberg',
|
|
|
|
'h_roots', 'j_roots', 'la_roots', 'p_roots', 'qrule',
|
|
|
|
'gaussq', 'richardson', 'quadgr', 'qdemo']
|
|
|
|
|
|
|
|
|
|
|
|
def _assert(cond, msg):
|
|
|
|
if not cond:
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
|
|
|
|
|
|
|
def _assert_warn(cond, msg):
|
|
|
|
if not cond:
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
|
|
|
|
|
|
|
def clencurt(fun, a, b, n=5, trace=False):
|
|
|
|
"""
|
|
|
|
Numerical evaluation of an integral, Clenshaw-Curtis method.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
fun : callable
|
|
|
|
a, b : array-like
|
|
|
|
Lower and upper integration limit, respectively.
|
|
|
|
n : integer
|
|
|
|
defines number of evaluation points (default 5)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
q_val = evaluated integral
|
|
|
|
tol = Estimate of the approximation error
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
CLENCURT approximates the integral of f(x) from a to b
|
|
|
|
using an 2*n+1 points Clenshaw-Curtis formula.
|
|
|
|
The error estimate is usually a conservative estimate of the
|
|
|
|
approximation error.
|
|
|
|
The integral is exact for polynomials of degree 2*n or less.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> val, err = clencurt(np.exp, 0, 2)
|
|
|
|
>>> np.allclose(val, np.expm1(2)), err[0] < 1e-10
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
simpson,
|
|
|
|
gaussq
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Goodwin, E.T. (1961),
|
|
|
|
"Modern Computing Methods",
|
|
|
|
2nd edition, New yourk: Philosophical Library, pp. 78--79
|
|
|
|
|
|
|
|
[2] Clenshaw, C.W. and Curtis, A.R. (1960),
|
|
|
|
Numerische Matematik, Vol. 2, pp. 197--205
|
|
|
|
"""
|
|
|
|
# make sure n_2 is even
|
|
|
|
n_2 = 2 * int(n)
|
|
|
|
a, b = np.atleast_1d(a, b)
|
|
|
|
a_shape = a.shape
|
|
|
|
a = a.ravel()
|
|
|
|
b = b.ravel()
|
|
|
|
|
|
|
|
a_size = np.prod(a_shape)
|
|
|
|
|
|
|
|
s = np.c_[0:n_2 + 1:1]
|
|
|
|
s_2 = np.c_[0:n_2 + 1:2]
|
|
|
|
x = np.cos(np.pi * s / n_2) * (b - a) / 2. + (b + a) / 2
|
|
|
|
|
|
|
|
if hasattr(fun, '__call__'):
|
|
|
|
f = fun(x)
|
|
|
|
else:
|
|
|
|
x_0 = np.flipud(fun[:, 0])
|
|
|
|
n_2 = len(x_0) - 1
|
|
|
|
_assert(abs(x - x_0) <= 1e-8,
|
|
|
|
'Input vector x must equal cos(pi*s/n_2)*(b-a)/2+(b+a)/2')
|
|
|
|
|
|
|
|
f = np.flipud(fun[:, 1::])
|
|
|
|
|
|
|
|
if trace:
|
|
|
|
plt.plot(x, f, '+')
|
|
|
|
|
|
|
|
# using a Gauss-Lobatto variant, i.e., first and last
|
|
|
|
# term f(a) and f(b) is multiplied with 0.5
|
|
|
|
f[0, :] = f[0, :] / 2
|
|
|
|
f[n_2, :] = f[n_2, :] / 2
|
|
|
|
|
|
|
|
# x = cos(pi*0:n_2/n_2)
|
|
|
|
# f = f(x)
|
|
|
|
#
|
|
|
|
# N+1
|
|
|
|
# c(k) = (2/N) sum f''(n)*cos(pi*(2*k-2)*(n-1)/N), 1 <= k <= N/2+1.
|
|
|
|
# n=1
|
|
|
|
n = n_2 // 2
|
|
|
|
fft = np.fft.fft
|
|
|
|
tmp = np.real(fft(f[:n_2, :], axis=0))
|
|
|
|
c = 2 / n_2 * (tmp[0:n + 1, :] + np.cos(np.pi * s_2) * f[n_2, :])
|
|
|
|
c[0, :] = c[0, :] / 2
|
|
|
|
c[n, :] = c[n, :] / 2
|
|
|
|
|
|
|
|
c = c[0:n + 1, :] / ((s_2 - 1) * (s_2 + 1))
|
|
|
|
q_val = (a - b) * np.sum(c, axis=0)
|
|
|
|
|
|
|
|
abserr = (b - a) * np.abs(c[n, :])
|
|
|
|
|
|
|
|
if a_size > 1:
|
|
|
|
abserr = np.reshape(abserr, a_shape)
|
|
|
|
q_val = np.reshape(q_val, a_shape)
|
|
|
|
return q_val, abserr
|
|
|
|
|
|
|
|
|
|
|
|
def romberg(fun, a, b, releps=1e-3, abseps=1e-3):
|
|
|
|
"""
|
|
|
|
Numerical integration with the Romberg method
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
fun : callable
|
|
|
|
function to integrate
|
|
|
|
a, b : real scalars
|
|
|
|
lower and upper integration limits, respectively.
|
|
|
|
releps, abseps : scalar, optional
|
|
|
|
requested relative and absolute error, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
Q : scalar
|
|
|
|
value of integral
|
|
|
|
abserr : scalar
|
|
|
|
estimated absolute error of integral
|
|
|
|
|
|
|
|
ROMBERG approximates the integral of F(X) from A to B
|
|
|
|
using Romberg's method of integration. The function F
|
|
|
|
must return a vector of output values if a vector of input values is given.
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> [q,err] = romberg(np.sqrt,0,10,0,1e-4)
|
|
|
|
>>> np.allclose(q, 21.08185107)
|
|
|
|
True
|
|
|
|
>>> err[0] < 1e-4
|
|
|
|
True
|
|
|
|
"""
|
|
|
|
h = b - a
|
|
|
|
h_min = 1.0e-9
|
|
|
|
# Max size of extrapolation table
|
|
|
|
table_limit = max(min(np.round(np.log2(h / h_min)), 30), 3)
|
|
|
|
|
|
|
|
rom = zeros((2, table_limit))
|
|
|
|
|
|
|
|
rom[0, 0] = h * (fun(a) + fun(b)) / 2
|
|
|
|
ipower = 1
|
|
|
|
f_p = ones(table_limit) * 4
|
|
|
|
|
|
|
|
# q_val1 = 0
|
|
|
|
q_val2 = 0.
|
|
|
|
q_val4 = rom[0, 0]
|
|
|
|
abserr = q_val4
|
|
|
|
# epstab = zeros(1,decdigs+7)
|
|
|
|
# newflg = 1
|
|
|
|
# [res,abserr,epstab,newflg] = dea(newflg,q_val4,abserr,epstab)
|
|
|
|
two = 1
|
|
|
|
one = 0
|
|
|
|
converged = False
|
|
|
|
for i in range(1, table_limit):
|
|
|
|
h *= 0.5
|
|
|
|
u_n5 = np.sum(fun(a + np.arange(1, 2 * ipower, 2) * h)) * h
|
|
|
|
|
|
|
|
# trapezoidal approximations
|
|
|
|
# T2n = 0.5 * (Tn + Un) = 0.5*Tn + u_n5
|
|
|
|
rom[two, 0] = 0.5 * rom[one, 0] + u_n5
|
|
|
|
|
|
|
|
f_p[i] = 4 * f_p[i - 1]
|
|
|
|
# Richardson extrapolation
|
|
|
|
for k in range(i):
|
|
|
|
rom[two, k + 1] = (rom[two, k] +
|
|
|
|
(rom[two, k] - rom[one, k]) / (f_p[k] - 1))
|
|
|
|
|
|
|
|
q_val1 = q_val2
|
|
|
|
q_val2 = q_val4
|
|
|
|
q_val4 = rom[two, i]
|
|
|
|
|
|
|
|
if 2 <= i:
|
|
|
|
res, abserr = dea3(q_val1, q_val2, q_val4)
|
|
|
|
# q_val4 = res
|
|
|
|
converged = abserr <= max(abseps, releps * abs(res))
|
|
|
|
if converged:
|
|
|
|
break
|
|
|
|
|
|
|
|
# rom(1,1:i) = rom(2,1:i)
|
|
|
|
two = one
|
|
|
|
one = (one + 1) % 2
|
|
|
|
ipower *= 2
|
|
|
|
_assert(converged, "Integral did not converge to the required accuracy!")
|
|
|
|
return res, abserr
|
|
|
|
|
|
|
|
|
|
|
|
def _h_roots_newton(n, releps=3e-14, max_iter=10):
|
|
|
|
# pim4=0.7511255444649425
|
|
|
|
pim4 = np.pi ** (-1. / 4)
|
|
|
|
|
|
|
|
# The roots are symmetric about the origin, so we have to
|
|
|
|
# find only half of them.
|
|
|
|
m = int(np.fix((n + 1) / 2))
|
|
|
|
|
|
|
|
# Initial approximations to the roots go into z.
|
|
|
|
anu = 2.0 * n + 1
|
|
|
|
rhs = np.arange(3, 4 * m, 4) * np.pi / anu
|
|
|
|
theta = _get_theta(rhs)
|
|
|
|
z = sqrt(anu) * np.cos(theta)
|
|
|
|
|
|
|
|
p = zeros((3, len(z)))
|
|
|
|
k_0 = 0
|
|
|
|
k_p1 = 1
|
|
|
|
|
|
|
|
for _i in range(max_iter):
|
|
|
|
# Newtons method carried out simultaneously on the roots.
|
|
|
|
p[k_0, :] = 0
|
|
|
|
p[k_p1, :] = pim4
|
|
|
|
|
|
|
|
for j in range(1, n + 1):
|
|
|
|
# Loop up the recurrence relation to get the Hermite
|
|
|
|
# polynomials evaluated at z.
|
|
|
|
k_m1 = k_0
|
|
|
|
k_0 = k_p1
|
|
|
|
k_p1 = np.mod(k_p1 + 1, 3)
|
|
|
|
|
|
|
|
p[k_p1, :] = (z * sqrt(2 / j) * p[k_0, :] -
|
|
|
|
sqrt((j - 1) / j) * p[k_m1, :])
|
|
|
|
|
|
|
|
# p now contains the desired Hermite polynomials.
|
|
|
|
# We next compute p_deriv, the derivatives,
|
|
|
|
# by the relation (4.5.21) using p2, the polynomials
|
|
|
|
# of one lower order.
|
|
|
|
|
|
|
|
p_deriv = sqrt(2 * n) * p[k_0, :]
|
|
|
|
d_z = p[k_p1, :] / p_deriv
|
|
|
|
|
|
|
|
z = z - d_z # Newtons formula.
|
|
|
|
|
|
|
|
converged = not np.any(abs(d_z) > releps)
|
|
|
|
if converged:
|
|
|
|
break
|
|
|
|
|
|
|
|
_assert_warn(converged, 'Newton iteration did not converge!')
|
|
|
|
weights = 2. / p_deriv ** 2
|
|
|
|
return _expand_roots(z, weights, n, m)
|
|
|
|
|
|
|
|
|
|
|
|
def h_roots(n, method='newton'):
|
|
|
|
"""
|
|
|
|
Returns the roots (x) of the nth order Hermite polynomial,
|
|
|
|
H_n(x), and weights (w) to use in Gaussian Quadrature over
|
|
|
|
[-inf,inf] with weighting function exp(-x**2).
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Hermite polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray
|
|
|
|
roots
|
|
|
|
w : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> x, w = h_roots(10)
|
|
|
|
>>> np.allclose(np.sum(x*w), -5.2516042729766621e-19)
|
|
|
|
True
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule, gaussq
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[2]. Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if not method.startswith('n'):
|
|
|
|
return ort.h_roots(n)
|
|
|
|
return _h_roots_newton(n)
|
|
|
|
|
|
|
|
|
|
|
|
def _j_roots_newton(n, alpha, beta, releps=3e-14, max_iter=10):
|
|
|
|
# Initial approximations to the roots go into z.
|
|
|
|
alfbet = alpha + beta
|
|
|
|
|
|
|
|
z = np.cos(np.pi * (np.arange(1, n + 1) - 0.25 + 0.5 * alpha) /
|
|
|
|
(n + 0.5 * (alfbet + 1)))
|
|
|
|
|
|
|
|
p = zeros((3, len(z)))
|
|
|
|
k_0 = 0
|
|
|
|
k_p1 = 1
|
|
|
|
for _i in range(max_iter):
|
|
|
|
# Newton's method carried out simultaneously on the roots.
|
|
|
|
tmp = 2 + alfbet
|
|
|
|
p[k_0, :] = 1
|
|
|
|
p[k_p1, :] = (alpha - beta + tmp * z) / 2
|
|
|
|
|
|
|
|
for j in range(2, n + 1):
|
|
|
|
# Loop up the recurrence relation to get the Jacobi
|
|
|
|
# polynomials evaluated at z.
|
|
|
|
k_m1 = k_0
|
|
|
|
k_0 = k_p1
|
|
|
|
k_p1 = np.mod(k_p1 + 1, 3)
|
|
|
|
|
|
|
|
a = 2. * j * (j + alfbet) * tmp
|
|
|
|
tmp = tmp + 2
|
|
|
|
c = 2 * (j - 1 + alpha) * (j - 1 + beta) * tmp
|
|
|
|
b = (tmp - 1) * (alpha ** 2 - beta ** 2 + tmp * (tmp - 2) * z)
|
|
|
|
|
|
|
|
p[k_p1, :] = (b * p[k_0, :] - c * p[k_m1, :]) / a
|
|
|
|
|
|
|
|
# p now contains the desired Jacobi polynomials.
|
|
|
|
# We next compute p_deriv, the derivatives with a standard
|
|
|
|
# relation involving the polynomials of one lower order.
|
|
|
|
|
|
|
|
p_deriv = ((n * (alpha - beta - tmp * z) * p[k_p1, :] +
|
|
|
|
2 * (n + alpha) * (n + beta) * p[k_0, :]) /
|
|
|
|
(tmp * (1 - z ** 2)))
|
|
|
|
d_z = p[k_p1, :] / p_deriv
|
|
|
|
z = z - d_z # Newton's formula.
|
|
|
|
|
|
|
|
converged = not any(abs(d_z) > releps * abs(z))
|
|
|
|
if converged:
|
|
|
|
break
|
|
|
|
|
|
|
|
_assert_warn(converged, 'too many iterations in jrule')
|
|
|
|
|
|
|
|
x = z # Store the root and the weight.
|
|
|
|
f = (sp.gammaln(alpha + n) + sp.gammaln(beta + n) -
|
|
|
|
sp.gammaln(n + 1) - sp.gammaln(alpha + beta + n + 1))
|
|
|
|
weights = (np.exp(f) * tmp * 2 ** alfbet / (p_deriv * p[k_0, :]))
|
|
|
|
return x, weights
|
|
|
|
|
|
|
|
|
|
|
|
def j_roots(n, alpha, beta, method='newton'):
|
|
|
|
"""
|
|
|
|
Returns the roots of the nth order Jacobi polynomial, P^(alpha,beta)_n(x)
|
|
|
|
and weights (w) to use in Gaussian Quadrature over [-1,1] with weighting
|
|
|
|
function (1-x)**alpha (1+x)**beta with alpha,beta > -1.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
alpha,beta : scalars
|
|
|
|
defining shape of Jacobi polynomial
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Hermite polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray
|
|
|
|
roots
|
|
|
|
w : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
--------
|
|
|
|
>>> [x,w]= j_roots(10,0,0)
|
|
|
|
>>> sum(x*w)
|
|
|
|
2.7755575615628914e-16
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule, gaussq
|
|
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
---------
|
|
|
|
[1] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[2]. Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
"""
|
|
|
|
_assert((-1 < alpha) & (-1 < beta),
|
|
|
|
'alpha and beta must be greater than -1')
|
|
|
|
if not method.startswith('n'):
|
|
|
|
return ort.j_roots(n, alpha, beta)
|
|
|
|
return _j_roots_newton(n, alpha, beta)
|
|
|
|
|
|
|
|
|
|
|
|
def la_roots(n, alpha=0, method='newton'):
|
|
|
|
"""
|
|
|
|
Returns the roots (x) of the nth order generalized (associated) Laguerre
|
|
|
|
polynomial, L^(alpha)_n(x), and weights (w) to use in Gaussian quadrature
|
|
|
|
over [0,inf] with weighting function exp(-x) x**alpha with alpha > -1.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Laguerre polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray
|
|
|
|
roots
|
|
|
|
w : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> [x,w] = h_roots(10)
|
|
|
|
>>> np.sum(x*w)
|
|
|
|
1.3352627380516791e-17
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule, gaussq
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[2]. Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
"""
|
|
|
|
_assert(-1 < alpha, 'alpha must be greater than -1')
|
|
|
|
|
|
|
|
if not method.startswith('n'):
|
|
|
|
return ort.la_roots(n, alpha)
|
|
|
|
return _la_roots_newton(n, alpha)
|
|
|
|
|
|
|
|
|
|
|
|
def _get_theta(rhs):
|
|
|
|
r_3 = rhs ** (1. / 3)
|
|
|
|
r_2 = r_3 ** 2
|
|
|
|
c = [9.084064e-01, 5.214976e-02, 2.579930e-03, 3.986126e-03]
|
|
|
|
theta = r_3 * (c[0] + r_2 * (c[1] + r_2 * (c[2] + r_2 * c[3])))
|
|
|
|
return theta
|
|
|
|
|
|
|
|
|
|
|
|
def _la_roots_newton(n, alpha, releps=3e-14, max_iter=10):
|
|
|
|
|
|
|
|
# Initial approximations to the roots go into z.
|
|
|
|
anu = 4.0 * n + 2.0 * alpha + 2.0
|
|
|
|
rhs = np.arange(4 * n - 1, 2, -4) * np.pi / anu
|
|
|
|
theta = _get_theta(rhs)
|
|
|
|
z = anu * np.cos(theta) ** 2
|
|
|
|
|
|
|
|
d_z = zeros(len(z))
|
|
|
|
p = zeros((3, len(z)))
|
|
|
|
p_previous = zeros((1, len(z)))
|
|
|
|
p_deriv = zeros((1, len(z)))
|
|
|
|
k_0 = 0
|
|
|
|
k_p1 = 1
|
|
|
|
k = slice(len(z))
|
|
|
|
for _i in range(max_iter):
|
|
|
|
# Newton's method carried out simultaneously on the roots.
|
|
|
|
p[k_0, k] = 0.
|
|
|
|
p[k_p1, k] = 1.
|
|
|
|
|
|
|
|
for j in range(1, n + 1):
|
|
|
|
# Loop up the recurrence relation to get the Laguerre
|
|
|
|
# polynomials evaluated at z.
|
|
|
|
km1 = k_0
|
|
|
|
k_0 = k_p1
|
|
|
|
k_p1 = np.mod(k_p1 + 1, 3)
|
|
|
|
|
|
|
|
p[k_p1, k] = ((2 * j - 1 + alpha - z[k]) * p[k_0, k] -
|
|
|
|
(j - 1 + alpha) * p[km1, k]) / j
|
|
|
|
# end
|
|
|
|
# p now contains the desired Laguerre polynomials.
|
|
|
|
# We next compute p_deriv, the derivatives with a standard
|
|
|
|
# relation involving the polynomials of one lower order.
|
|
|
|
|
|
|
|
p_previous[k] = p[k_0, k]
|
|
|
|
p_deriv[k] = (n * p[k_p1, k] - (n + alpha) * p_previous[k]) / z[k]
|
|
|
|
|
|
|
|
d_z[k] = p[k_p1, k] / p_deriv[k]
|
|
|
|
z[k] = z[k] - d_z[k] # Newton?s formula.
|
|
|
|
# k = find((abs(d_z) > releps.*z))
|
|
|
|
|
|
|
|
converged = not np.any(abs(d_z) > releps)
|
|
|
|
if converged:
|
|
|
|
break
|
|
|
|
|
|
|
|
_assert_warn(converged, 'too many iterations!')
|
|
|
|
|
|
|
|
nodes = z
|
|
|
|
weights = -np.exp(sp.gammaln(alpha + n) -
|
|
|
|
sp.gammaln(n)) / (p_deriv * n * p_previous)
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
|
|
|
|
def _p_roots_newton_start(n):
|
|
|
|
m = int(np.fix((n + 1) / 2))
|
|
|
|
t = (np.pi / (4 * n + 2)) * np.arange(3, 4 * m, 4)
|
|
|
|
a = 1 - (1 - 1 / n) / (8 * n * n)
|
|
|
|
x = a * np.cos(t)
|
|
|
|
return m, x
|
|
|
|
|
|
|
|
|
|
|
|
def _p_roots_newton(n):
|
|
|
|
"""
|
|
|
|
Algorithm given by Davis and Rabinowitz in 'Methods
|
|
|
|
of Numerical Integration', page 365, Academic Press, 1975.
|
|
|
|
"""
|
|
|
|
m, x = _p_roots_newton_start(n)
|
|
|
|
|
|
|
|
e_1 = n * (n + 1)
|
|
|
|
for _j in range(2):
|
|
|
|
p_km1 = 1
|
|
|
|
p_k = x
|
|
|
|
for k in range(2, n + 1):
|
|
|
|
t_1 = x * p_k
|
|
|
|
p_kp1 = t_1 - p_km1 - (t_1 - p_km1) / k + t_1
|
|
|
|
p_km1 = p_k
|
|
|
|
p_k = p_kp1
|
|
|
|
|
|
|
|
den = 1. - x * x
|
|
|
|
d_1 = n * (p_km1 - x * p_k)
|
|
|
|
d_pn = d_1 / den
|
|
|
|
d_2pn = (2. * x * d_pn - e_1 * p_k) / den
|
|
|
|
d_3pn = (4. * x * d_2pn + (2 - e_1) * d_pn) / den
|
|
|
|
d_4pn = (6. * x * d_3pn + (6 - e_1) * d_2pn) / den
|
|
|
|
u = p_k / d_pn
|
|
|
|
v = d_2pn / d_pn
|
|
|
|
h = -u * (1 + (.5 * u) * (v + u * (v * v - u * d_3pn / (3 * d_pn))))
|
|
|
|
p = p_k + h * (d_pn + (.5 * h) * (d_2pn + (h / 3) *
|
|
|
|
(d_3pn + .25 * h * d_4pn)))
|
|
|
|
d_p = d_pn + h * (d_2pn + (.5 * h) * (d_3pn + h * d_4pn / 3))
|
|
|
|
h = h - p / d_p
|
|
|
|
x = x + h
|
|
|
|
|
|
|
|
nodes = -x - h
|
|
|
|
f_x = d_1 - h * e_1 * (p_k + (h / 2) * (d_pn + (h / 3) *
|
|
|
|
(d_2pn + (h / 4) *
|
|
|
|
(d_3pn + (.2 * h) * d_4pn))))
|
|
|
|
weights = 2 * (1 - nodes ** 2) / (f_x ** 2)
|
|
|
|
return _expand_roots(nodes, weights, n, m)
|
|
|
|
|
|
|
|
|
|
|
|
def _p_roots_newton1(n, releps=1e-15, max_iter=100):
|
|
|
|
m, x = _p_roots_newton_start(n)
|
|
|
|
# Compute the zeros of the N+1 Legendre Polynomial
|
|
|
|
# using the recursion relation and the Newton-Raphson method
|
|
|
|
|
|
|
|
# Legendre-Gauss Polynomials
|
|
|
|
p = zeros((3, m))
|
|
|
|
|
|
|
|
# Derivative of LGP
|
|
|
|
p_deriv = zeros((m,))
|
|
|
|
d_x = zeros((m,))
|
|
|
|
|
|
|
|
# Compute the zeros of the N+1 Legendre Polynomial
|
|
|
|
# using the recursion relation and the Newton-Raphson method
|
|
|
|
|
|
|
|
# Iterate until new points are uniformly within epsilon of old
|
|
|
|
# points
|
|
|
|
k = slice(m)
|
|
|
|
k_0 = 0
|
|
|
|
k_p1 = 1
|
|
|
|
for _ix in range(max_iter):
|
|
|
|
p[k_0, k] = 1
|
|
|
|
p[k_p1, k] = x[k]
|
|
|
|
|
|
|
|
for j in range(2, n + 1):
|
|
|
|
k_m1 = k_0
|
|
|
|
k_0 = k_p1
|
|
|
|
k_p1 = np.mod(k_0 + 1, 3)
|
|
|
|
p[k_p1, k] = ((2 * j - 1) * x[k] * p[k_0, k] -
|
|
|
|
(j - 1) * p[k_m1, k]) / j
|
|
|
|
|
|
|
|
p_deriv[k] = n * (p[k_0, k] - x[k] * p[k_p1, k]) / (1 - x[k] ** 2)
|
|
|
|
|
|
|
|
d_x[k] = p[k_p1, k] / p_deriv[k]
|
|
|
|
x[k] = x[k] - d_x[k]
|
|
|
|
k, = np.nonzero((abs(d_x) > releps * np.abs(x)))
|
|
|
|
converged = len(k) == 0
|
|
|
|
if converged:
|
|
|
|
break
|
|
|
|
|
|
|
|
_assert(converged, 'Too many iterations!')
|
|
|
|
|
|
|
|
nodes = -x
|
|
|
|
weights = 2. / ((1 - nodes ** 2) * (p_deriv ** 2))
|
|
|
|
return _expand_roots(nodes, weights, n, m)
|
|
|
|
|
|
|
|
|
|
|
|
def _expand_roots(x, w, n, m):
|
|
|
|
if (m + m) > n:
|
|
|
|
x[m - 1] = 0.0
|
|
|
|
if not (m + m) == n:
|
|
|
|
m = m - 1
|
|
|
|
x = np.hstack((x, -x[m - 1::-1]))
|
|
|
|
w = np.hstack((w, w[m - 1::-1]))
|
|
|
|
return x, w
|
|
|
|
|
|
|
|
|
|
|
|
def p_roots(n, method='newton', a=-1, b=1):
|
|
|
|
"""
|
|
|
|
Returns the roots (x) of the nth order Legendre polynomial, P_n(x),
|
|
|
|
and weights to use in Gaussian Quadrature over [-1,1] with weighting
|
|
|
|
function 1.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Hermite polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
nodes : ndarray
|
|
|
|
roots
|
|
|
|
weights : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
Integral of exp(x) from a = 0 to b = 3 is: exp(3)-exp(0)=
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> nodes, weights = p_roots(11, a=0, b=3)
|
|
|
|
>>> np.allclose(np.sum(np.exp(nodes) * weights), 19.085536923187668)
|
|
|
|
True
|
|
|
|
>>> nodes, weights = p_roots(11, method='newton1', a=0, b=3)
|
|
|
|
>>> np.allclose(np.sum(np.exp(nodes) * weights), 19.085536923187668)
|
|
|
|
True
|
|
|
|
>>> nodes, weights = p_roots(11, method='eigenvalue', a=0, b=3)
|
|
|
|
>>> np.allclose(np.sum(np.exp(nodes) * weights), 19.085536923187668)
|
|
|
|
True
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
quadg.
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Davis and Rabinowitz (1975) 'Methods of Numerical Integration',
|
|
|
|
page 365, Academic Press.
|
|
|
|
|
|
|
|
[2] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[3] Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if not method.startswith('n'):
|
|
|
|
nodes, weights = ort.p_roots(n)
|
|
|
|
else:
|
|
|
|
if method.endswith('1'):
|
|
|
|
nodes, weights = _p_roots_newton1(n)
|
|
|
|
else:
|
|
|
|
nodes, weights = _p_roots_newton(n)
|
|
|
|
|
|
|
|
if (a != -1) | (b != 1):
|
|
|
|
# Linear map from[-1,1] to [a,b]
|
|
|
|
d_h = (b - a) / 2
|
|
|
|
nodes = d_h * (nodes + 1) + a
|
|
|
|
weights = weights * d_h
|
|
|
|
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
|
|
|
|
def q5_roots(n):
|
|
|
|
"""
|
|
|
|
5 : p(x) = 1/sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 1'st kind
|
|
|
|
"""
|
|
|
|
j = np.arange(1, n + 1)
|
|
|
|
weights = ones(n) * np.pi / n
|
|
|
|
nodes = np.cos((2 * j - 1) * np.pi / (2 * n))
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
|
|
|
|
def q6_roots(n):
|
|
|
|
"""
|
|
|
|
6 : p(x) = sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 2'nd kind
|
|
|
|
"""
|
|
|
|
j = np.arange(1, n + 1)
|
|
|
|
x_j = j * np.pi / (n + 1)
|
|
|
|
weights = np.pi / (n + 1) * np.sin(x_j) ** 2
|
|
|
|
nodes = np.cos(x_j)
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
|
|
|
|
def q7_roots(n):
|
|
|
|
"""
|
|
|
|
7 : p(x) = sqrt((x-a)/(b-x)), a = 0, b = 1
|
|
|
|
"""
|
|
|
|
j = np.arange(1, n + 1)
|
|
|
|
x_j = (j - 0.5) * pi / (2 * n + 1)
|
|
|
|
nodes = np.cos(x_j) ** 2
|
|
|
|
weights = 2 * np.pi * nodes / (2 * n + 1)
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
|
|
|
|
def q8_roots(n):
|
|
|
|
"""
|
|
|
|
8 : p(x) = 1/sqrt(b-x), a = 0, b = 1
|
|
|
|
"""
|
|
|
|
nodes_1, weights_1 = p_roots(2 * n)
|
|
|
|
k, = np.where(0 <= nodes_1)
|
|
|
|
weights = 2 * weights_1[k]
|
|
|
|
nodes = 1 - nodes_1[k] ** 2
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
|
|
|
|
def q9_roots(n):
|
|
|
|
"""
|
|
|
|
9 : p(x) = sqrt(b-x), a = 0, b = 1
|
|
|
|
"""
|
|
|
|
nodes_1, weights_1 = p_roots(2 * n + 1)
|
|
|
|
k, = np.where(0 < nodes_1)
|
|
|
|
weights = 2 * nodes_1[k] ** 2 * weights_1[k]
|
|
|
|
nodes = 1 - nodes_1[k] ** 2
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
|
|
|
|
def qrule(n, wfun=1, alpha=0, beta=0):
|
|
|
|
"""
|
|
|
|
Return nodes and weights for Gaussian quadratures.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of base points
|
|
|
|
wfun : integer
|
|
|
|
defining the weight function, p(x). (default wfun = 1)
|
|
|
|
1 : p(x) = 1 a =-1, b = 1 Gauss-Legendre
|
|
|
|
2 : p(x) = exp(-x^2) a =-inf, b = inf Hermite
|
|
|
|
3 : p(x) = x^alpha*exp(-x) a = 0, b = inf Laguerre
|
|
|
|
4 : p(x) = (x-a)^alpha*(b-x)^beta a =-1, b = 1 Jacobi
|
|
|
|
5 : p(x) = 1/sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 1'st kind
|
|
|
|
6 : p(x) = sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 2'nd kind
|
|
|
|
7 : p(x) = sqrt((x-a)/(b-x)), a = 0, b = 1
|
|
|
|
8 : p(x) = 1/sqrt(b-x), a = 0, b = 1
|
|
|
|
9 : p(x) = sqrt(b-x), a = 0, b = 1
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
bp = base points (abscissas)
|
|
|
|
wf = weight factors
|
|
|
|
|
|
|
|
The Gaussian Quadrature integrates a (2n-1)th order
|
|
|
|
polynomial exactly and the integral is of the form
|
|
|
|
b n
|
|
|
|
Int ( p(x)* F(x) ) dx = Sum ( wf_j* F( bp_j ) )
|
|
|
|
a j=1
|
|
|
|
where p(x) is the weight function.
|
|
|
|
For Jacobi and Laguerre: alpha, beta >-1 (default alpha=beta=0)
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
---------
|
|
|
|
>>> import numpy as np
|
|
|
|
|
|
|
|
# integral of x^2 from a = -1 to b = 1
|
|
|
|
>>> bp, wf = qrule(10)
|
|
|
|
>>> np.allclose(sum(bp**2*wf), 0.66666666666666641)
|
|
|
|
True
|
|
|
|
|
|
|
|
# integral of exp(-x**2)*x**2 from a = -inf to b = inf
|
|
|
|
>>> bp, wf = qrule(10,2)
|
|
|
|
>>> np.allclose(sum(bp ** 2 * wf), 0.88622692545275772)
|
|
|
|
True
|
|
|
|
|
|
|
|
# integral of (x+1)*(1-x)**2 from a = -1 to b = 1
|
|
|
|
>>> bp, wf = qrule(10,4,1,2)
|
|
|
|
>>> np.allclose((bp * wf).sum(), 0.26666666666666755)
|
|
|
|
True
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
gaussq
|
|
|
|
|
|
|
|
Reference
|
|
|
|
---------
|
|
|
|
Abromowitz and Stegun (1954)
|
|
|
|
(for method 5 to 9)
|
|
|
|
"""
|
|
|
|
|
|
|
|
if wfun == 3: # Generalized Laguerre
|
|
|
|
return la_roots(n, alpha)
|
|
|
|
if wfun == 4: # Gauss-Jacobi
|
|
|
|
return j_roots(n, alpha, beta)
|
|
|
|
|
|
|
|
_assert(0 < wfun < 10, 'unknown weight function')
|
|
|
|
|
|
|
|
root_fun = [None, p_roots, h_roots, la_roots, j_roots, q5_roots, q6_roots,
|
|
|
|
q7_roots, q8_roots, q9_roots][wfun]
|
|
|
|
return root_fun(n)
|
|
|
|
|
|
|
|
|
|
|
|
class _Gaussq(object):
|
|
|
|
"""
|
|
|
|
Numerically evaluate integral, Gauss quadrature.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
fun : callable
|
|
|
|
a,b : array-like
|
|
|
|
lower and upper integration limits, respectively.
|
|
|
|
releps, abseps : real scalars, optional
|
|
|
|
relative and absolute tolerance, respectively.
|
|
|
|
(default releps=abseps=1e-3).
|
|
|
|
wfun : scalar integer, optional
|
|
|
|
defining the weight function, p(x). (default wfun = 1)
|
|
|
|
1 : p(x) = 1 a =-1, b = 1 Gauss-Legendre
|
|
|
|
2 : p(x) = exp(-x^2) a =-inf, b = inf Hermite
|
|
|
|
3 : p(x) = x^alpha*exp(-x) a = 0, b = inf Laguerre
|
|
|
|
4 : p(x) = (x-a)^alpha*(b-x)^beta a =-1, b = 1 Jacobi
|
|
|
|
5 : p(x) = 1/sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 1'st kind
|
|
|
|
6 : p(x) = sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 2'nd kind
|
|
|
|
7 : p(x) = sqrt((x-a)/(b-x)), a = 0, b = 1
|
|
|
|
8 : p(x) = 1/sqrt(b-x), a = 0, b = 1
|
|
|
|
9 : p(x) = sqrt(b-x), a = 0, b = 1
|
|
|
|
trace : bool, optional
|
|
|
|
If non-zero a point plot of the integrand (default False).
|
|
|
|
gn : scalar integer
|
|
|
|
number of base points to start the integration with (default 2).
|
|
|
|
alpha, beta : real scalars, optional
|
|
|
|
Shape parameters of Laguerre or Jacobi weight function
|
|
|
|
(alpha,beta>-1) (default alpha=beta=0)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
val : ndarray
|
|
|
|
evaluated integral
|
|
|
|
err : ndarray
|
|
|
|
error estimate, absolute tolerance abs(int-intold)
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
GAUSSQ numerically evaluate integral using a Gauss quadrature.
|
|
|
|
The Quadrature integrates a (2m-1)th order polynomial exactly and the
|
|
|
|
integral is of the form
|
|
|
|
b
|
|
|
|
Int (p(x)* Fun(x)) dx
|
|
|
|
a
|
|
|
|
GAUSSQ is vectorized to accept integration limits A, B and
|
|
|
|
coefficients P1,P2,...Pn, as matrices or scalars and the
|
|
|
|
result is the common size of A, B and P1,P2,...,Pn.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
---------
|
|
|
|
integration of x**2 from 0 to 2 and from 1 to 4
|
|
|
|
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> A = [0, 1]
|
|
|
|
>>> B = [2, 4]
|
|
|
|
>>> fun = lambda x: x**2
|
|
|
|
>>> val1, err1 = gaussq(fun,A,B)
|
|
|
|
>>> np.allclose(val1, [ 2.6666667, 21. ])
|
|
|
|
True
|
|
|
|
>>> np.allclose(err1, [ 1.7763568e-15, 1.0658141e-14])
|
|
|
|
True
|
|
|
|
|
|
|
|
Integration of x^2*exp(-x) from zero to infinity:
|
|
|
|
>>> fun2 = lambda x : np.ones(np.shape(x))
|
|
|
|
>>> val2, err2 = gaussq(fun2, 0, np.inf, wfun=3, alpha=2)
|
|
|
|
>>> val3, err3 = gaussq(lambda x: x**2,0, np.inf, wfun=3, alpha=0)
|
|
|
|
>>> np.allclose(val2, 2), err2[0] < 1e-14
|
|
|
|
(True, True)
|
|
|
|
>>> np.allclose(val3, 2), err3[0] < 1e-14
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
Integrate humps from 0 to 2 and from 1 to 4
|
|
|
|
>>> val4, err4 = gaussq(humps, A, B, trace=True)
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule
|
|
|
|
gaussq2d
|
|
|
|
"""
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _get_dx(wfun, jacob, alpha, beta):
|
|
|
|
def fun1(x):
|
|
|
|
return x
|
|
|
|
if wfun == 4:
|
|
|
|
d_x = jacob ** (alpha + beta + 1)
|
|
|
|
else:
|
|
|
|
d_x = [None, fun1, fun1, fun1, None, lambda x: ones(np.shape(x)),
|
|
|
|
lambda x: x ** 2, fun1, sqrt,
|
|
|
|
lambda x: sqrt(x) ** 3][wfun](jacob)
|
|
|
|
return d_x.ravel()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _nodes_and_weights(num_nodes, wfun, alpha, beta):
|
|
|
|
global _NODES_AND_WEIGHTS
|
|
|
|
name = 'wfun{:d}_{:d}_{:g}_{:g}'.format(wfun, num_nodes, alpha, beta)
|
|
|
|
nodes_and_weights = _NODES_AND_WEIGHTS.setdefault(name, [])
|
|
|
|
if len(nodes_and_weights) == 0:
|
|
|
|
nodes_and_weights.extend(qrule(num_nodes, wfun, alpha, beta))
|
|
|
|
nodes, weights = nodes_and_weights
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
def _initialize_trace(self, max_iter):
|
|
|
|
if self.trace:
|
|
|
|
self.x_trace = [0] * max_iter
|
|
|
|
self.y_trace = [0] * max_iter
|
|
|
|
|
|
|
|
def _plot_trace(self, x, y):
|
|
|
|
if self.trace:
|
|
|
|
self.x_trace.append(x.ravel())
|
|
|
|
self.y_trace.append(y.ravel())
|
|
|
|
hfig = plt.plot(x, y, 'r.')
|
|
|
|
plt.setp(hfig, 'color', 'b')
|
|
|
|
|
|
|
|
def _plot_final_trace(self):
|
|
|
|
if self.trace > 0:
|
|
|
|
plt.clf()
|
|
|
|
plt.plot(np.hstack(self.x_trace), np.hstack(self.y_trace), '+')
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _get_jacob(wfun, a, b):
|
|
|
|
if wfun in [2, 3]:
|
|
|
|
jacob = ones((np.size(a), 1))
|
|
|
|
else:
|
|
|
|
jacob = (b - a) * 0.5
|
|
|
|
if wfun in [7, 8, 9]:
|
|
|
|
jacob *= 2
|
|
|
|
return jacob
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _warn(k, a_shape):
|
|
|
|
n = len(k)
|
|
|
|
if n > 1:
|
|
|
|
if n == np.prod(a_shape):
|
|
|
|
tmptxt = 'All integrals did not converge'
|
|
|
|
else:
|
|
|
|
tmptxt = '%d integrals did not converge' % (n, )
|
|
|
|
tmptxt = tmptxt + '--singularities likely!'
|
|
|
|
else:
|
|
|
|
tmptxt = 'Integral did not converge--singularity likely!'
|
|
|
|
warnings.warn(tmptxt)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _initialize(wfun, a, b, args):
|
|
|
|
args = np.broadcast_arrays(*np.atleast_1d(a, b, *args))
|
|
|
|
a_shape = args[0].shape
|
|
|
|
args = [np.reshape(x, (-1, 1)) for x in args]
|
|
|
|
a_out, b_out = args[:2]
|
|
|
|
args = args[2:]
|
|
|
|
if wfun in [2, 3]:
|
|
|
|
a_out = zeros((a_out.size, 1))
|
|
|
|
return a_out, b_out, args, a_shape
|
|
|
|
|
|
|
|
def __call__(self, fun, a, b, releps=1e-3, abseps=1e-3, alpha=0, beta=0,
|
|
|
|
wfun=1, trace=False, args=(), max_iter=11):
|
|
|
|
self.trace = trace
|
|
|
|
num_nodes = 2
|
|
|
|
|
|
|
|
a_0, b_0, args, a_shape = self._initialize(wfun, a, b, args)
|
|
|
|
|
|
|
|
jacob = self._get_jacob(wfun, a_0, b_0)
|
|
|
|
shift = int(wfun in [1, 4, 5, 6])
|
|
|
|
d_x = self._get_dx(wfun, jacob, alpha, beta)
|
|
|
|
|
|
|
|
self._initialize_trace(max_iter)
|
|
|
|
|
|
|
|
# Break out of the iteration loop for three reasons:
|
|
|
|
# 1) the last update is very small (compared to int and to releps)
|
|
|
|
# 2) There are more than 11 iterations. This should NEVER happen.
|
|
|
|
dtype = np.result_type(fun((a_0+b_0)*0.5, *args))
|
|
|
|
n_k = np.prod(a_shape) # # of integrals we have to compute
|
|
|
|
k = np.arange(n_k)
|
|
|
|
opts = (n_k, dtype)
|
|
|
|
val, val_old, abserr = zeros(*opts), ones(*opts), zeros(*opts)
|
|
|
|
nodes_and_weights = self._nodes_and_weights
|
|
|
|
for i in range(max_iter):
|
|
|
|
x_n, weights = nodes_and_weights(num_nodes, wfun, alpha, beta)
|
|
|
|
x = (x_n + shift) * jacob[k, :] + a_0[k, :]
|
|
|
|
|
|
|
|
params = [xi[k, :] for xi in args]
|
|
|
|
y = fun(x, *params)
|
|
|
|
self._plot_trace(x, y)
|
|
|
|
val[k] = np.sum(weights * y, axis=1) * d_x[k] # do the integration
|
|
|
|
if any(np.isnan(val)):
|
|
|
|
val[np.isnan(val)] = val_old[np.isnan(val)]
|
|
|
|
if 1 < i:
|
|
|
|
abserr[k] = abs(val_old[k] - val[k]) # absolute tolerance
|
|
|
|
k, = np.where(abserr > np.maximum(abs(releps * val), abseps))
|
|
|
|
n_k = len(k) # of integrals we have to compute again
|
|
|
|
if n_k == 0:
|
|
|
|
break
|
|
|
|
val_old[k] = val[k]
|
|
|
|
num_nodes *= 2 # double the # of basepoints and weights
|
|
|
|
else:
|
|
|
|
self._warn(k, a_shape)
|
|
|
|
|
|
|
|
# make sure int is the same size as the integration limits
|
|
|
|
val.shape = a_shape
|
|
|
|
abserr.shape = a_shape
|
|
|
|
|
|
|
|
self._plot_final_trace()
|
|
|
|
return val, abserr
|
|
|
|
gaussq = _Gaussq()
|
|
|
|
|
|
|
|
|
|
|
|
def richardson(q_val, k):
|
|
|
|
# license BSD
|
|
|
|
# Richardson extrapolation with parameter estimation
|
|
|
|
c = np.real((q_val[k - 1] - q_val[k - 2]) / (q_val[k] - q_val[k - 1])) - 1.
|
|
|
|
# The lower bound 0.07 admits the singularity x.^-0.9
|
|
|
|
c = max(c, 0.07)
|
|
|
|
return q_val[k] + (q_val[k] - q_val[k - 1]) / c
|
|
|
|
|
|
|
|
|
|
|
|
class _Quadgr(object):
|
|
|
|
"""
|
|
|
|
Gauss-Legendre quadrature with Richardson extrapolation.
|
|
|
|
|
|
|
|
[q_val,ERR] = QUADGR(FUN,A,B,TOL) approximates the integral of a function
|
|
|
|
FUN from A to B with an absolute error tolerance TOL. FUN is a function
|
|
|
|
handle and must accept vector arguments. TOL is 1e-6 by default. q_val is
|
|
|
|
the integral approximation and ERR is an estimate of the absolute
|
|
|
|
error.
|
|
|
|
|
|
|
|
QUADGR uses a 12-point Gauss-Legendre quadrature. The error estimate is
|
|
|
|
based on successive interval bisection. Richardson extrapolation
|
|
|
|
accelerates the convergence for some integrals, especially integrals
|
|
|
|
with endpoint singularities.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> q_val, err = quadgr(np.log,0,1)
|
|
|
|
>>> q, err = quadgr(np.exp,0,9999*1j*np.pi)
|
|
|
|
>>> np.allclose(q, -2.0000000000122662), err < 1.0e-08
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
>>> q, err = quadgr(lambda x: np.sqrt(4-x**2), 0, 2, abseps=1e-12)
|
|
|
|
>>> np.allclose(q, 3.1415926535897811), err < 1.0e-12
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
>>> q, err = quadgr(lambda x: np.sqrt(4-x**2), 0, 0, abseps=1e-12)
|
|
|
|
>>> np.allclose(q, 0), err < 1.0e-12
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
>>> q, err = quadgr(lambda x: x**-0.75, 0, 1)
|
|
|
|
>>> np.allclose(q, 4), err < 1.e-13
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
>>> q, err = quadgr(lambda x: 1./np.sqrt(1-x**2), -1, 1)
|
|
|
|
>>> np.allclose(q, 3.141596056985029), err < 1.0e-05
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
>>> q, err = quadgr(lambda x: np.exp(-x**2), -np.inf, np.inf, 1e-9)
|
|
|
|
>>> np.allclose(q, np.sqrt(np.pi)), err < 1e-9
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
>>> q, err = quadgr(lambda x: np.cos(x)*np.exp(-x), 0, np.inf, 1e-9)
|
|
|
|
>>> np.allclose(q, 0.5), err < 1e-9
|
|
|
|
(True, True)
|
|
|
|
>>> q, err = quadgr(lambda x: np.cos(x)*np.exp(-x), np.inf, 0, 1e-9)
|
|
|
|
>>> np.allclose(q, -0.5), err < 1e-9
|
|
|
|
(True, True)
|
|
|
|
>>> q, err = quadgr(lambda x: np.cos(x)*np.exp(x), -np.inf, 0, 1e-9)
|
|
|
|
>>> np.allclose(q, 0.5), err < 1e-9
|
|
|
|
(True, True)
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
QUAD,
|
|
|
|
QUADGK
|
|
|
|
"""
|
|
|
|
# Author: jonas.lundgren@saabgroup.com, 2009. license BSD
|
|
|
|
# Order limits (required if infinite limits)
|
|
|
|
|
|
|
|
def _change_variable_and_integrate(self, fun, a, b, abseps, max_iter):
|
|
|
|
isreal = np.isreal(a) & np.isreal(b) & ~np.isnan(a) & ~np.isnan(b)
|
|
|
|
_assert(isreal, 'Infinite intervals must be real.')
|
|
|
|
integrate = self._integrate
|
|
|
|
# Change of variable
|
|
|
|
if np.isfinite(a) & np.isinf(b): # a to inf
|
|
|
|
val, err = integrate(lambda t: fun(a + t / (1 - t)) / (1 - t) ** 2,
|
|
|
|
0, 1, abseps, max_iter)
|
|
|
|
elif np.isinf(a) & np.isfinite(b): # -inf to b
|
|
|
|
val, err = integrate(lambda t: fun(b + t / (1 + t)) / (1 + t) ** 2,
|
|
|
|
-1, 0, abseps, max_iter)
|
|
|
|
else: # -inf to inf
|
|
|
|
val1, err1 = integrate(lambda t: fun(t / (1 - t)) / (1 - t) ** 2,
|
|
|
|
0, 1, abseps / 2, max_iter)
|
|
|
|
val2, err2 = integrate(lambda t: fun(t / (1 + t)) / (1 + t) ** 2,
|
|
|
|
-1, 0, abseps / 2, max_iter)
|
|
|
|
val = val1 + val2
|
|
|
|
err = err1 + err2
|
|
|
|
return val, err
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _nodes_and_weights():
|
|
|
|
# Gauss-Legendre quadrature (12-point)
|
|
|
|
x = np.asarray(
|
|
|
|
[0.12523340851146894, 0.36783149899818018, 0.58731795428661748,
|
|
|
|
0.76990267419430469, 0.9041172563704748, 0.98156063424671924])
|
|
|
|
w = np.asarray(
|
|
|
|
[0.24914704581340288, 0.23349253653835478, 0.20316742672306584,
|
|
|
|
0.16007832854334636, 0.10693932599531818, 0.047175336386511842])
|
|
|
|
nodes = np.hstack((x, -x))
|
|
|
|
weights = np.hstack((w, w))
|
|
|
|
return nodes, weights
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _get_best_estimate(vals0, vals1, vals2, k):
|
|
|
|
if k >= 6:
|
|
|
|
q_v = np.hstack((vals0[k], vals1[k], vals2[k]))
|
|
|
|
q_w = np.hstack((vals0[k - 1], vals1[k - 1], vals2[k - 1]))
|
|
|
|
elif k >= 4:
|
|
|
|
q_v = np.hstack((vals0[k], vals1[k]))
|
|
|
|
q_w = np.hstack((vals0[k - 1], vals1[k - 1]))
|
|
|
|
else:
|
|
|
|
q_v = np.atleast_1d(vals0[k])
|
|
|
|
q_w = vals0[k - 1]
|
|
|
|
# Estimate absolute error
|
|
|
|
errors = np.atleast_1d(abs(q_v - q_w))
|
|
|
|
j = errors.argmin()
|
|
|
|
err = errors[j]
|
|
|
|
q_val = q_v[j]
|
|
|
|
# if k >= 2: # and not iscomplex:
|
|
|
|
# _val, err1 = dea3(vals0[k - 2], vals0[k - 1], vals0[k])
|
|
|
|
return q_val, err
|
|
|
|
|
|
|
|
def _integrate(self, fun, a, b, abseps, max_iter):
|
|
|
|
dtype = np.result_type(fun((a+b)/2), fun((a+b)/4))
|
|
|
|
|
|
|
|
# Initiate vectors
|
|
|
|
val0 = zeros(max_iter, dtype=dtype) # Quadrature
|
|
|
|
val1 = zeros(max_iter, dtype=dtype) # First Richardson extrapolation
|
|
|
|
val2 = zeros(max_iter, dtype=dtype) # Second Richardson extrapolation
|
|
|
|
|
|
|
|
x_n, weights = self._nodes_and_weights()
|
|
|
|
n = len(x_n)
|
|
|
|
# One interval
|
|
|
|
d_x = (b - a) / 2 # Half interval length
|
|
|
|
x = (a + b) / 2 + d_x * x_n # Nodes
|
|
|
|
# Quadrature
|
|
|
|
val0[0] = d_x * np.sum(weights * fun(x), axis=0)
|
|
|
|
|
|
|
|
# Successive bisection of intervals
|
|
|
|
for k in range(1, max_iter):
|
|
|
|
|
|
|
|
# Interval bisection
|
|
|
|
d_x = d_x / 2
|
|
|
|
x = np.hstack([x + a, x + b]) / 2
|
|
|
|
# Quadrature
|
|
|
|
val0[k] = np.sum(np.sum(np.reshape(fun(x), (-1, n)), axis=0) *
|
|
|
|
weights, axis=0) * d_x
|
|
|
|
|
|
|
|
# Richardson extrapolation
|
|
|
|
if k >= 5:
|
|
|
|
val1[k] = richardson(val0, k)
|
|
|
|
val2[k] = richardson(val1, k)
|
|
|
|
elif k >= 3:
|
|
|
|
val1[k] = richardson(val0, k)
|
|
|
|
|
|
|
|
q_val, err = self._get_best_estimate(val0, val1, val2, k)
|
|
|
|
|
|
|
|
converged = (err < abseps) | ~np.isfinite(q_val)
|
|
|
|
if converged:
|
|
|
|
break
|
|
|
|
|
|
|
|
_assert_warn(converged, 'Max number of iterations reached without '
|
|
|
|
'convergence.')
|
|
|
|
_assert_warn(np.isfinite(q_val),
|
|
|
|
'Integral approximation is Infinite or NaN.')
|
|
|
|
|
|
|
|
# The error estimate should not be zero
|
|
|
|
err = err + 2 * np.finfo(q_val).eps
|
|
|
|
return q_val, err
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _order_limits(a, b):
|
|
|
|
if np.real(a) > np.real(b):
|
|
|
|
return b, a, True
|
|
|
|
return a, b, False
|
|
|
|
|
|
|
|
def __call__(self, fun, a, b, abseps=1e-5, max_iter=17):
|
|
|
|
a = np.asarray(a)
|
|
|
|
b = np.asarray(b)
|
|
|
|
if a == b:
|
|
|
|
q_val = b - a
|
|
|
|
err = np.abs(b - a)
|
|
|
|
return q_val, err
|
|
|
|
|
|
|
|
a, b, reverse = self._order_limits(a, b)
|
|
|
|
|
|
|
|
improper_integral = np.isinf(a) | np.isinf(b)
|
|
|
|
if improper_integral: # Infinite limits
|
|
|
|
q_val, err = self._change_variable_and_integrate(fun, a, b, abseps,
|
|
|
|
max_iter)
|
|
|
|
else:
|
|
|
|
q_val, err = self._integrate(fun, a, b, abseps, max_iter)
|
|
|
|
|
|
|
|
# Reverse direction
|
|
|
|
if reverse:
|
|
|
|
q_val = -q_val
|
|
|
|
|
|
|
|
return q_val, err
|
|
|
|
|
|
|
|
quadgr = _Quadgr()
|
|
|
|
|
|
|
|
|
|
|
|
def boole(y, x):
|
|
|
|
a, b = x[0], x[-1]
|
|
|
|
n = len(x)
|
|
|
|
h = (b - a) / (n - 1)
|
|
|
|
return (2 * h / 45) * (7 * (y[0] + y[-1]) + 12 * np.sum(y[2:n - 1:4]) +
|
|
|
|
32 * np.sum(y[1:n - 1:2]) +
|
|
|
|
14 * np.sum(y[4:n - 3:4]))
|
|
|
|
|
|
|
|
|
|
|
|
def _display(neval, vals_dic, err_dic, plot_error):
|
|
|
|
# display results
|
|
|
|
kmax = len(neval)
|
|
|
|
names = sorted(vals_dic.keys())
|
|
|
|
num_cols = 2
|
|
|
|
formats = ['%4.0f, '] + ['%10.10f, '] * num_cols * 2
|
|
|
|
formats[-1] = formats[-1].split(',')[0]
|
|
|
|
formats_h = ['%4s, '] + ['%20s, '] * num_cols
|
|
|
|
formats_h[-1] = formats_h[-1].split(',')[0]
|
|
|
|
headers = ['evals'] + ['%12s %12s' % ('approx', 'error')] * num_cols
|
|
|
|
while len(names) > 0:
|
|
|
|
print(''.join(fi % t for (fi, t) in zip(formats_h,
|
|
|
|
['ftn'] + names[:num_cols])))
|
|
|
|
print(' '.join(headers))
|
|
|
|
data = [neval]
|
|
|
|
for name in names[:num_cols]:
|
|
|
|
data.append(vals_dic[name])
|
|
|
|
data.append(err_dic[name])
|
|
|
|
|
|
|
|
data = np.vstack(tuple(data)).T
|
|
|
|
for k in range(kmax):
|
|
|
|
tmp = data[k].tolist()
|
|
|
|
print(''.join(fi % t for (fi, t) in zip(formats, tmp)))
|
|
|
|
|
|
|
|
if plot_error:
|
|
|
|
plt.figure(0)
|
|
|
|
for name in names[:num_cols]:
|
|
|
|
plt.loglog(neval, err_dic[name], label=name)
|
|
|
|
|
|
|
|
names = names[num_cols:]
|
|
|
|
|
|
|
|
if plot_error:
|
|
|
|
plt.xlabel('number of function evaluations')
|
|
|
|
plt.ylabel('error')
|
|
|
|
plt.legend()
|
|
|
|
|
|
|
|
|
|
|
|
def qdemo(f, a, b, kmax=9, plot_error=False):
|
|
|
|
"""
|
|
|
|
Compares different quadrature rules.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
f : callable
|
|
|
|
function
|
|
|
|
a,b : scalars
|
|
|
|
lower and upper integration limits
|
|
|
|
|
|
|
|
Details
|
|
|
|
-------
|
|
|
|
qdemo(f,a,b) computes and compares various approximations to
|
|
|
|
the integral of f from a to b. Three approximations are used,
|
|
|
|
the composite trapezoid, Simpson's, and Boole's rules, all with
|
|
|
|
equal length subintervals.
|
|
|
|
In a case like qdemo(exp,0,3) one can see the expected
|
|
|
|
convergence rates for each of the three methods.
|
|
|
|
In a case like qdemo(sqrt,0,3), the convergence rate is limited
|
|
|
|
not by the method, but by the singularity of the integrand.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> qdemo(np.exp,0,3, plot_error=True)
|
|
|
|
true value = 19.08553692
|
|
|
|
ftn, Boole, Chebychev
|
|
|
|
evals approx error approx error
|
|
|
|
3, 19.4008539142, 0.3153169910, 19.5061466023, 0.4206096791
|
|
|
|
5, 19.0910191534, 0.0054822302, 19.0910191534, 0.0054822302
|
|
|
|
9, 19.0856414320, 0.0001045088, 19.0855374134, 0.0000004902
|
|
|
|
17, 19.0855386464, 0.0000017232, 19.0855369232, 0.0000000000
|
|
|
|
33, 19.0855369505, 0.0000000273, 19.0855369232, 0.0000000000
|
|
|
|
65, 19.0855369236, 0.0000000004, 19.0855369232, 0.0000000000
|
|
|
|
129, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
257, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
513, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
ftn, Clenshaw-Curtis, Gauss-Legendre
|
|
|
|
evals approx error approx error
|
|
|
|
3, 19.5061466023, 0.4206096791, 19.0803304585, 0.0052064647
|
|
|
|
5, 19.0834145766, 0.0021223465, 19.0855365951, 0.0000003281
|
|
|
|
9, 19.0855369150, 0.0000000082, 19.0855369232, 0.0000000000
|
|
|
|
17, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
33, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
65, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
129, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
257, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
513, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
ftn, Simps, Trapz
|
|
|
|
evals approx error approx error
|
|
|
|
3, 19.5061466023, 0.4206096791, 22.5366862979, 3.4511493747
|
|
|
|
5, 19.1169646189, 0.0314276957, 19.9718950387, 0.8863581155
|
|
|
|
9, 19.0875991312, 0.0020622080, 19.3086731081, 0.2231361849
|
|
|
|
17, 19.0856674267, 0.0001305035, 19.1414188470, 0.0558819239
|
|
|
|
33, 19.0855451052, 0.0000081821, 19.0995135407, 0.0139766175
|
|
|
|
65, 19.0855374350, 0.0000005118, 19.0890314614, 0.0034945382
|
|
|
|
129, 19.0855369552, 0.0000000320, 19.0864105817, 0.0008736585
|
|
|
|
257, 19.0855369252, 0.0000000020, 19.0857553393, 0.0002184161
|
|
|
|
513, 19.0855369233, 0.0000000001, 19.0855915273, 0.0000546041
|
|
|
|
"""
|
|
|
|
true_val, _tol = intg.quad(f, a, b)
|
|
|
|
print('true value = %12.8f' % (true_val,))
|
|
|
|
neval = zeros(kmax, dtype=int)
|
|
|
|
vals_dic = {}
|
|
|
|
err_dic = {}
|
|
|
|
|
|
|
|
# try various approximations
|
|
|
|
methods = [trapz, simps, boole, ]
|
|
|
|
|
|
|
|
for k in range(kmax):
|
|
|
|
n = 2 ** (k + 1) + 1
|
|
|
|
neval[k] = n
|
|
|
|
x = np.linspace(a, b, n)
|
|
|
|
y = f(x)
|
|
|
|
for method in methods:
|
|
|
|
name = method.__name__.title()
|
|
|
|
q = method(y, x)
|
|
|
|
vals_dic.setdefault(name, []).append(q)
|
|
|
|
err_dic.setdefault(name, []).append(abs(q - true_val))
|
|
|
|
|
|
|
|
name = 'Clenshaw-Curtis'
|
|
|
|
q = clencurt(f, a, b, (n - 1) // 2)[0]
|
|
|
|
vals_dic.setdefault(name, []).append(q[0])
|
|
|
|
err_dic.setdefault(name, []).append(abs(q[0] - true_val))
|
|
|
|
|
|
|
|
name = 'Chebychev'
|
|
|
|
c_k = np.polynomial.chebyshev.chebfit(x, y, deg=min(n-1, 36))
|
|
|
|
c_ki = np.polynomial.chebyshev.chebint(c_k)
|
|
|
|
q = np.polynomial.chebyshev.chebval(x[-1], c_ki)
|
|
|
|
vals_dic.setdefault(name, []).append(q)
|
|
|
|
err_dic.setdefault(name, []).append(abs(q - true_val))
|
|
|
|
# c_k = chebfit(f,n,a,b)
|
|
|
|
# q = chebval(b,chebint(c_k,a,b),a,b)
|
|
|
|
# qc2[k] = q; ec2[k] = abs(q - true)
|
|
|
|
|
|
|
|
name = 'Gauss-Legendre' # quadrature
|
|
|
|
q = intg.fixed_quad(f, a, b, n=n)[0]
|
|
|
|
# [x, w]=qrule(n,1)
|
|
|
|
# x = (b-a)/2*x + (a+b)/2 % Transform base points X.
|
|
|
|
# w = (b-a)/2*w % Adjust weigths.
|
|
|
|
# q = sum(feval(f,x)*w)
|
|
|
|
vals_dic.setdefault(name, []).append(q)
|
|
|
|
err_dic.setdefault(name, []).append(abs(q - true_val))
|
|
|
|
|
|
|
|
_display(neval, vals_dic, err_dic, plot_error)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# val, err = clencurt(np.exp, 0, 2)
|
|
|
|
# valt = np.exp(2) - np.exp(0)
|
|
|
|
# [Q, err] = quadgr(lambda x: x ** 2, 1, 4, 1e-9)
|
|
|
|
# [Q, err] = quadgr(humps, 1, 4, 1e-9)
|
|
|
|
#
|
|
|
|
# [x, w] = h_roots(11, 'newton')
|
|
|
|
# sum(w)
|
|
|
|
# [x2, w2] = la_roots(11, 1, 't')
|
|
|
|
#
|
|
|
|
# from scitools import numpyutils as npu #@UnresolvedImport
|
|
|
|
# fun = npu.wrap2callable('x**2')
|
|
|
|
# p0 = fun(0)
|
|
|
|
# A = [0, 1, 1]; B = [2, 4, 3]
|
|
|
|
# area, err = gaussq(fun, A, B)
|
|
|
|
#
|
|
|
|
# fun = npu.wrap2callable('x**2')
|
|
|
|
# [val1, err1] = gaussq(fun, A, B)
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Integration of x^2*exp(-x) from zero to infinity:
|
|
|
|
# fun2 = npu.wrap2callable('1')
|
|
|
|
# [val2, err2] = gaussq(fun2, 0, np.inf, wfun=3, alpha=2)
|
|
|
|
# [val2, err2] = gaussq(lambda x: x ** 2, 0, np.inf, wfun=3, alpha=0)
|
|
|
|
#
|
|
|
|
# Integrate humps from 0 to 2 and from 1 to 4
|
|
|
|
# [val3, err3] = gaussq(humps, A, B)
|
|
|
|
#
|
|
|
|
# [x, w] = p_roots(11, 'newton', 1, 3)
|
|
|
|
# y = np.sum(x ** 2 * w)
|
|
|
|
|
|
|
|
x = np.linspace(0, np.pi / 2)
|
|
|
|
_q0 = np.trapz(humps(x), x)
|
|
|
|
[q, err] = romberg(humps, 0, np.pi / 2, 1e-4)
|
|
|
|
print(q, err)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
from wafo.testing import test_docstrings
|
|
|
|
test_docstrings(__file__)
|
|
|
|
# qdemo(np.exp, 0, 3, plot_error=True)
|
|
|
|
# plt.show('hold')
|
|
|
|
# main()
|