Plot energy spectra below time series

master
Dan Howe 5 years ago
parent 75cb3d2192
commit 2f9edb1dff

@ -2,24 +2,28 @@ import io
import os
import base64
import datetime
import numpy as np
import pandas as pd
import webbrowser as wb
import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import plotly.plotly as py
import plotly.graph_objs as go
import wafo.objects as wo
app = dash.Dash()
app.title = 'daqviewer'
app.scripts.config.serve_locally = True
app.layout = html.Div([
dcc.Upload(
id='upload-data',
children=html.Div([html.A('Drag and drop csv files, or click to select.')]),
children=html.Div(
[html.A('Drag and drop csv files, or click to select.')]),
style={
'width': '99%',
'height': '60px',
@ -45,8 +49,7 @@ def parse_contents(contents, filename, date):
inst_type = basename.split('_')[-1]
try:
if inst_type == 'WP':
df = pd.read_csv(
io.StringIO(decoded.decode('utf-8')),
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')),
index_col=0,
header=5,
skiprows=[6])
@ -60,8 +63,7 @@ def parse_contents(contents, filename, date):
col_names[i + j] = '{}-{}'.format(col, suffix)
df.columns = col_names
else:
df = pd.read_csv(
io.StringIO(decoded.decode('utf-8')),
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')),
index_col=0,
header=3,
skiprows=[4])
@ -73,23 +75,50 @@ def parse_contents(contents, filename, date):
# Zero time series based on first 5s
df -= df[:5].mean()
data = []
ts = []
for col in df.columns:
trace = go.Scatter(x=df.index, y=df[col], name=col, opacity=0.8)
data.append(trace)
ts.append(trace)
layout = dict(title=basename, xaxis=dict(rangeslider=dict()))
fig = dict(data=data, layout=layout)
timeseries = dict(data=ts, layout=layout)
# Specify wave statistics
var = [
'Hm0', 'Tm01', 'Tm02', 'Tm24', 'Tp', 'Ss', 'Sp', 'Ka', 'Tp1', 'alpha',
'eps2', 'eps4'
]
spec = []
for col in df.columns:
t = df.index.values[:, np.newaxis]
x = df[[col]].values
return html.Div([dcc.Graph(id='my-graph', figure=fig)])
# Get wave statistics
xx = wo.mat2timeseries(np.hstack([t, x]))
S = xx.tospecdata()
S.freqtype = 'f'
values, _, keys = S.characteristic(var)
# Plot energy spectrum
trace = go.Scatter(x=S.args, y=S.data, name=col, opacity=0.8)
spec.append(trace)
@app.callback(
Output('output-data-upload', 'children'), [
energy = dict(data=spec)
elements = html.Div([
dcc.Graph(id='time-series', figure=timeseries),
dcc.Graph(id='energy-spectrum', figure=energy)
])
return elements
@app.callback(Output('output-data-upload', 'children'), [
Input('upload-data', 'contents'),
Input('upload-data', 'filename'),
Input('upload-data', 'last_modified')
])
])
def update_output(list_of_contents, list_of_names, list_of_dates):
if list_of_contents is not None:
children = [
@ -102,7 +131,7 @@ def update_output(list_of_contents, list_of_names, list_of_dates):
def main():
port = 8050
wb.open('http://localhost:{}'.format(port))
app.run_server(port=port, debug=False)
app.run_server(port=port, debug=True)
if __name__ == '__main__':

Loading…
Cancel
Save