Allow input files to be specified from the command line

etta-drone
Dan Howe 6 years ago
parent 8ca180f93f
commit 74c9351fe7

@ -1,414 +1,413 @@
import os
import sys
import argparse
import subprocess
from tqdm import tqdm
import numpy as np
from scipy import interpolate
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, Polygon
from survey_tools import call_lastools
def remove_problems(x_list, y_list, z_list, x_now, y_now, check_value):
z_ave=nine_pt_moving_average(z_list)
deriv_ave, chainage=forward_derivative(x_list, y_list, z_ave)
deriv_real, chainage=two_point_derivative(x_list, y_list, z_list)
#first find the reference contour on the beach
#index_contour, x_now, y_now, distance=find_beach_reference_contour_choose_closest(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave, check_value)
index_contour, x_now, y_now, distance=find_beach_reference_contour(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave,deriv_real,check_value)
if index_contour<len(chainage): #other wise keep everthing
#find the beach slope, get the interpolated line (beach line) and the index of the reference contour +1
beach_slope, beach_line, index_high=find_beach_slope(chainage, z_ave,index_contour, check_value)
#find the natural deviation of the lower beach
nat_dev=get_natural_deviation(chainage, z_list, index_contour, index_high, beach_line)
for i in range(index_contour, len(z_list)):
if abs(z_list[i]-float(beach_line(chainage[i])))>nat_dev:
break
else:
i=index_contour
z_return=z_list[0:i]
chainage_return=chainage[0:i]
return z_return, chainage_return, x_now, y_now, distance
def two_point_derivative(x_list, y_list, z_list):
chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))]
deriv=[(z_list[i+1]-z_list[i-1])/(chain[i+1]-chain[i-1]) for i in range(1, len(z_list)-1)]
deriv.insert(0,0)
deriv.append(0)
return deriv, chain
def forward_derivative(x_list, y_list, z_list):
chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))]
deriv=[(z_list[i]-z_list[i-1])/(chain[i]-chain[i-1]) for i in range(0, len(z_list)-1)]
deriv.insert(0,0)
return deriv, chain
def find_first_over_reference(z_list, value):
i=len(z_list)-1
while i>0 and z_list[i]<value:
i=i-1
return i
def nine_pt_moving_average(z_list):
i=0
move_ave=[]
while i<len(z_list):
if i<5:
ave=np.mean([z_list[j] for j in range(0,i+5)])
elif i>len(z_list)-5:
ave=np.mean([z_list[j] for j in range(i-4,len(z_list))])
else:
ave=np.mean([z_list[j] for j in range(i-4,i+5)])
move_ave.append(ave)
i=i+1
return move_ave
def find_neg_derivative(z_list, deriv_list):
i=len(z_list)-5
while z_list[i]>=0 and z_list[i+1]>=0 and z_list[i+2]>=0 and z_list[i+3]>=0 and z_list[i+4]>=0:
i=i-1
return i
def find_beach_reference_contour_choose_closest(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list, check_value):
#note that z_list should be the 9 point moving average
#assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD
i=0
choice_list=[]
distance_list=[]
if z_ave_list[i]>check_value:
state_now='over'
else:
state_now='under'
while i<len(z_ave_list):
if state_now=='under' and z_ave_list[i]>check_value: #only keep if it is downward sloping
state_now='over'
elif state_now=='over' and z_ave_list[i]<check_value:
choice_list.append(i)
state_now='under'
if x_last!=None:
distance_list.append(((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5)
i=i+1
if len(choice_list)>0 and x_last==None: #choose the first time for the first point
i=choice_list[0]
distance=0
elif len(choice_list)>0 and x_last!=None:
assert(len(choice_list)==len(distance_list))
i=choice_list[distance_list.index(min(distance_list))]
distance=min(distance_list)
if i>=len(x_list):
i=len(x_list)-1
if x_last!=None:
distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5
else:
distance=0
x=x_list[i]
y=y_list[i]
return i, x, y, distance
def find_beach_reference_contour(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list,deriv_real_list, check_value):
#note that z_list should be the 9 point moving average
#assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD
i=len(z_ave_list)-1
while i>=0 and (z_ave_list[i]>check_value+2 or z_ave_list[i]<check_value-2 or deriv_ave_list[i]>0 or max([abs(i) for i in deriv_real_list[max(0,i-7):i]]+[0])>0.3):#beaches are shallow sloping, low
i=i-1
#find the first time it gets to check_value after this
while i>=0 and z_ave_list[i]<check_value:
i=i-1
if i==0:
i=len(z_ave_list)-1 # the whole this is above the beach
if x_last!=None:
distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5
else:
distance=0
x=x_list[i]
y=y_list[i]
return i, x, y, distance
def find_beach_slope(chain_list, z_ave_list, ref_index, check_value):
#ref index is the index of the check value
#find the beach slope between this point and 1 m above this point
i=ref_index
while i>0 and z_ave_list[i]<check_value+1:
i=i-1
# Hide numpy floating point arithmetic warnings
np.seterr(all='ignore')
slope=(z_ave_list[i]-z_ave_list[ref_index])/(chain_list[i]-chain_list[ref_index])
# Show numpy floating point arithmetic warnings
np.seterr(all=None)
beach_ave=interpolate.interp1d([min(chain_list),max(chain_list)], [(min(chain_list)-chain_list[ref_index])*slope+z_ave_list[ref_index], (z_ave_list[ref_index]-(chain_list[ref_index]-max(chain_list))*slope)])
return slope, beach_ave, i
def get_natural_deviation(chain_list, z_list, ref_index, ref_high, beach_ave):
#for the points considered to be on the beach (reference contour to reference contour +1), find the average natural deviation
deviation=[]
for i in range(ref_high, ref_index+1):
dev_tmp=abs(z_list[i] - float(beach_ave(chain_list[i])))
deviation.append(dev_tmp)
natural_deviation=min(np.max(deviation),0.4) #THIS MAY BE TOO CONSERVATIVE
return natural_deviation
def distance_point_to_poly(x_list, y_list, x_now, y_now):
#make a line from the mid of x_list, y_list
end=Point(x_list[-1], y_list[-1])
point=Point(x_now, y_now)
dist=point.distance(end)
return dist
def polygon_wave_runup(xyz_1m, direction, shp_name, set_check_value, distance_check, zone):
#print('starting processing of wave runup')
all_data=pd.read_csv(xyz_1m, header=None, names=['X','Y','Z'])
if direction=='north_south':
all_data_sorted=all_data.sort_values(by=['X', 'Y'], ascending=[1,0])
elif direction=='west_east':
all_data_sorted=all_data.sort_values(by=['Y', 'X'], ascending=[0,1])
fixed_now=0
a=0
X_tmp=[]
processed_data = pd.DataFrame(columns=['X','Y','Z'])
list_to_print=[10,20,30,40,50,60,70,80,90]
crop_line=[]
top_line=[]
tmp_x_last=None
tmp_y_last=None
exceed_list=[]
# Create progress bar
pbar = tqdm(all_data_sorted.iterrows(), total=all_data_sorted.shape[0])
for index, line in pbar:
a=a+1
percent_done=round(a/len(all_data_sorted)*100,1)
if percent_done in list_to_print:
#print("Finished %s%% of the processing" % percent_done)
list_to_print=list_to_print[1:len(list_to_print)]
if direction=='north_south':
check_this=line['X']
elif direction=='west_east':
check_this=line['Y']
if check_this==fixed_now:
X_tmp.append(line['X'])
Y_tmp.append(line['Y'])
Z_tmp.append(line['Z'])
else:
if len(X_tmp)!=0:
#try: ########may need to change!~!
if len(X_tmp)>10:
Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value)
#except:
else:
Z_set=Z_tmp
temp_x=X_tmp[len(Z_set)-1]
temp_y=Y_tmp[len(Z_set)-1]
distance=0
distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y)
if distance_2_old<distance_check: # find a way to change so it is checking the distance from the first crop polyogn, concave_now.buffer(buffer)
tmp_x_last=temp_x
tmp_y_last=temp_y
crop_line.append([X_tmp[len(Z_set)-1], Y_tmp[len(Z_set)-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise crop by the distance_check
else:
exceed_list.append(1)
try:
tmp_x_last=X_tmp[len(X_tmp)-distance_check] #beacuse this is a 1m DSM, this works
tmp_y_last=Y_tmp[len(Y_tmp)-distance_check]
crop_line.append([tmp_x_last, tmp_y_last])
top_line.append([X_tmp[0], Y_tmp[0]])
except:
print('problem with the last crop point, keeping whole line')
crop_line.append([X_tmp[-1], Y_tmp[-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
if direction=='north_south':
fixed_now=line['X']
elif direction=='west_east':
fixed_now=line['Y']
X_tmp=[line['X']]
Y_tmp=[line['Y']]
Z_tmp=[line['Z']]
else:
if direction=='north_south':
fixed_now=line['X']
elif direction=='west_east':
fixed_now=line['Y']
X_tmp=[line['X']]
Y_tmp=[line['Y']]
Z_tmp=[line['Z']]
#for the last line
derivative, chainage=forward_derivative(X_tmp, Y_tmp, Z_tmp)
if len(X_tmp)>10:
Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value)
#except:
else:
Z_set=Z_tmp
temp_x=X_tmp[len(Z_set)-1]
temp_y=Y_tmp[len(Z_set)-1]
distance=0
X_set=X_tmp[0:len(Z_set)]
Y_set=Y_tmp[0:len(Z_set)]
#write to new data frame
#if len(Z_set)>0:
# for i in range(0, len(Z_set)):
# processed_data =processed_data.append({'X':X_set[i],'Y':Y_set[i],'Z':Z_set[i],'r':r_set[i],'g':g_set[i],'b':b_set[i]}, ignore_index=True)
#add to crop line
distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y)
if distance_2_old<distance_check: # find a way to change so it is checking the distance from the first crop polyogn, concave_now.buffer(buffer)
tmp_x_last=temp_x
tmp_y_last=temp_y
crop_line.append([X_tmp[len(Z_set)-1], Y_tmp[len(Z_set)-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise crop by the distance_check
else:
exceed_list.append(1)
tmp_x_last=X_tmp[len(X_tmp)-distance_check]
tmp_y_last=Y_tmp[len(Y_tmp)-distance_check]
crop_line.append(tmp_x_last, tmp_y_last)
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise dont add. straight line is better
if direction=='north_south':
y_filtered=nine_pt_moving_average([i[1] for i in crop_line])
crop_new=[[crop_line[i][0],y_filtered[i]] for i in range(0, len(crop_line))]
elif direction=='west_east':
x_filtered=nine_pt_moving_average([i[0] for i in crop_line])
crop_new=[[x_filtered[i],crop_line[i][1]] for i in range(0, len(crop_line))]
for_shape=crop_new+top_line[::-1]
for_shape.append(crop_new[0])
#print('exceeded the manual distance_check %s%% of the time. manually cropping undertaken' % (round(len(exceed_list)/a,2)*100))
#making the cropping shapefile
#print('making the crop polygon')
# Export polygon as shapefile
df = gpd.GeoDataFrame(geometry=[Polygon(for_shape)])
df.crs = {'init': 'epsg:283{}'.format(zone), 'no_defs': True}
df.to_file(shp_name, driver='ESRI Shapefile')
return None
def remove_temp_files(directory):
for f in os.listdir(directory):
os.unlink(os.path.join(directory, f))
return None
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'input_file',
metavar='PARAMS_FILE',
help='name of parameter file',
default=None)
# Print usage if no arguments are provided
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# read the parameters file and scroll through it
input_file = args.input_file
input_file = 'Parameter Files/las-manipulation-survey-2.xlsx'
params_file=pd.read_excel(input_file, sheet_name="PARAMS")
for i, row in params_file.iterrows():
print("Starting to process %s" % row['Beach'])
input_las = row['INPUT LAS']
initial_crop_poly = row['INITIAL CROP POLY']
lasground_step = row['LASGROUND STEP']
zone_MGA = row['ZONE MGA']
check_value = row['CHECK VALUE']
direct = row['DIRECTION']
check_distance = row['CHECK DISTANCE']
las_dir = row['LAS CLASSIFIED FOLDER']
shp_dir = row['SHP SWASH FOLDER']
tmp_dir = row['TMP FOLDER']
# Get base name of input las
las_basename = os.path.splitext(os.path.basename(input_las))[0]
# Crop to beach boundary
print('Clipping...')
las_data = call_lastools('lasclip', input=input_las, output='-stdout',
args=['-poly', initial_crop_poly], verbose=False)
# Classify ground points
print('Classifying ground...')
las_data = call_lastools('lasground_new', input=las_data, output='-stdout',
args=['-step', lasground_step], verbose=False)
# Save classified point cloud
las_name = os.path.join(las_dir, las_basename + '.las')
with open (las_name, 'wb') as f:
f.write(las_data)
# Interpolate point cloud onto a grid
print('Interpolating to grid...')
xyz_name = os.path.join(tmp_dir, las_basename + '.xyz')
call_lastools('las2dem', input=las_data, output=xyz_name,
args=['-step', 1], verbose=False)
# Make runup clipping mask from gridded point cloud
print('Calculating runup clipping mask...')
shp_name = os.path.join(shp_dir, las_basename + '.shp')
polygon_wave_runup(xyz_name, direct, shp_name, check_value, check_distance, zone_MGA)
#NOTE THAT YOU NEED TO CHECK THE OUTPUT SHP FILE AND ADJUST AS REQUIRED
#delete the temp files
remove_temp_files(tmp_dir)
if __name__ == '__main__':
main()
import os
import sys
import argparse
import subprocess
from tqdm import tqdm
import numpy as np
from scipy import interpolate
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, Polygon
from survey_tools import call_lastools
def remove_problems(x_list, y_list, z_list, x_now, y_now, check_value):
z_ave=nine_pt_moving_average(z_list)
deriv_ave, chainage=forward_derivative(x_list, y_list, z_ave)
deriv_real, chainage=two_point_derivative(x_list, y_list, z_list)
#first find the reference contour on the beach
#index_contour, x_now, y_now, distance=find_beach_reference_contour_choose_closest(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave, check_value)
index_contour, x_now, y_now, distance=find_beach_reference_contour(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave,deriv_real,check_value)
if index_contour<len(chainage): #other wise keep everthing
#find the beach slope, get the interpolated line (beach line) and the index of the reference contour +1
beach_slope, beach_line, index_high=find_beach_slope(chainage, z_ave,index_contour, check_value)
#find the natural deviation of the lower beach
nat_dev=get_natural_deviation(chainage, z_list, index_contour, index_high, beach_line)
for i in range(index_contour, len(z_list)):
if abs(z_list[i]-float(beach_line(chainage[i])))>nat_dev:
break
else:
i=index_contour
z_return=z_list[0:i]
chainage_return=chainage[0:i]
return z_return, chainage_return, x_now, y_now, distance
def two_point_derivative(x_list, y_list, z_list):
chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))]
deriv=[(z_list[i+1]-z_list[i-1])/(chain[i+1]-chain[i-1]) for i in range(1, len(z_list)-1)]
deriv.insert(0,0)
deriv.append(0)
return deriv, chain
def forward_derivative(x_list, y_list, z_list):
chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))]
deriv=[(z_list[i]-z_list[i-1])/(chain[i]-chain[i-1]) for i in range(0, len(z_list)-1)]
deriv.insert(0,0)
return deriv, chain
def find_first_over_reference(z_list, value):
i=len(z_list)-1
while i>0 and z_list[i]<value:
i=i-1
return i
def nine_pt_moving_average(z_list):
i=0
move_ave=[]
while i<len(z_list):
if i<5:
ave=np.mean([z_list[j] for j in range(0,i+5)])
elif i>len(z_list)-5:
ave=np.mean([z_list[j] for j in range(i-4,len(z_list))])
else:
ave=np.mean([z_list[j] for j in range(i-4,i+5)])
move_ave.append(ave)
i=i+1
return move_ave
def find_neg_derivative(z_list, deriv_list):
i=len(z_list)-5
while z_list[i]>=0 and z_list[i+1]>=0 and z_list[i+2]>=0 and z_list[i+3]>=0 and z_list[i+4]>=0:
i=i-1
return i
def find_beach_reference_contour_choose_closest(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list, check_value):
#note that z_list should be the 9 point moving average
#assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD
i=0
choice_list=[]
distance_list=[]
if z_ave_list[i]>check_value:
state_now='over'
else:
state_now='under'
while i<len(z_ave_list):
if state_now=='under' and z_ave_list[i]>check_value: #only keep if it is downward sloping
state_now='over'
elif state_now=='over' and z_ave_list[i]<check_value:
choice_list.append(i)
state_now='under'
if x_last!=None:
distance_list.append(((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5)
i=i+1
if len(choice_list)>0 and x_last==None: #choose the first time for the first point
i=choice_list[0]
distance=0
elif len(choice_list)>0 and x_last!=None:
assert(len(choice_list)==len(distance_list))
i=choice_list[distance_list.index(min(distance_list))]
distance=min(distance_list)
if i>=len(x_list):
i=len(x_list)-1
if x_last!=None:
distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5
else:
distance=0
x=x_list[i]
y=y_list[i]
return i, x, y, distance
def find_beach_reference_contour(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list,deriv_real_list, check_value):
#note that z_list should be the 9 point moving average
#assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD
i=len(z_ave_list)-1
while i>=0 and (z_ave_list[i]>check_value+2 or z_ave_list[i]<check_value-2 or deriv_ave_list[i]>0 or max([abs(i) for i in deriv_real_list[max(0,i-7):i]]+[0])>0.3):#beaches are shallow sloping, low
i=i-1
#find the first time it gets to check_value after this
while i>=0 and z_ave_list[i]<check_value:
i=i-1
if i==0:
i=len(z_ave_list)-1 # the whole this is above the beach
if x_last!=None:
distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5
else:
distance=0
x=x_list[i]
y=y_list[i]
return i, x, y, distance
def find_beach_slope(chain_list, z_ave_list, ref_index, check_value):
#ref index is the index of the check value
#find the beach slope between this point and 1 m above this point
i=ref_index
while i>0 and z_ave_list[i]<check_value+1:
i=i-1
# Hide numpy floating point arithmetic warnings
np.seterr(all='ignore')
slope=(z_ave_list[i]-z_ave_list[ref_index])/(chain_list[i]-chain_list[ref_index])
# Show numpy floating point arithmetic warnings
np.seterr(all=None)
beach_ave=interpolate.interp1d([min(chain_list),max(chain_list)], [(min(chain_list)-chain_list[ref_index])*slope+z_ave_list[ref_index], (z_ave_list[ref_index]-(chain_list[ref_index]-max(chain_list))*slope)])
return slope, beach_ave, i
def get_natural_deviation(chain_list, z_list, ref_index, ref_high, beach_ave):
#for the points considered to be on the beach (reference contour to reference contour +1), find the average natural deviation
deviation=[]
for i in range(ref_high, ref_index+1):
dev_tmp=abs(z_list[i] - float(beach_ave(chain_list[i])))
deviation.append(dev_tmp)
natural_deviation=min(np.max(deviation),0.4) #THIS MAY BE TOO CONSERVATIVE
return natural_deviation
def distance_point_to_poly(x_list, y_list, x_now, y_now):
#make a line from the mid of x_list, y_list
end=Point(x_list[-1], y_list[-1])
point=Point(x_now, y_now)
dist=point.distance(end)
return dist
def polygon_wave_runup(xyz_1m, direction, shp_name, set_check_value, distance_check, zone):
#print('starting processing of wave runup')
all_data=pd.read_csv(xyz_1m, header=None, names=['X','Y','Z'])
if direction=='north_south':
all_data_sorted=all_data.sort_values(by=['X', 'Y'], ascending=[1,0])
elif direction=='west_east':
all_data_sorted=all_data.sort_values(by=['Y', 'X'], ascending=[0,1])
fixed_now=0
a=0
X_tmp=[]
processed_data = pd.DataFrame(columns=['X','Y','Z'])
list_to_print=[10,20,30,40,50,60,70,80,90]
crop_line=[]
top_line=[]
tmp_x_last=None
tmp_y_last=None
exceed_list=[]
# Create progress bar
pbar = tqdm(all_data_sorted.iterrows(), total=all_data_sorted.shape[0])
for index, line in pbar:
a=a+1
percent_done=round(a/len(all_data_sorted)*100,1)
if percent_done in list_to_print:
#print("Finished %s%% of the processing" % percent_done)
list_to_print=list_to_print[1:len(list_to_print)]
if direction=='north_south':
check_this=line['X']
elif direction=='west_east':
check_this=line['Y']
if check_this==fixed_now:
X_tmp.append(line['X'])
Y_tmp.append(line['Y'])
Z_tmp.append(line['Z'])
else:
if len(X_tmp)!=0:
#try: ########may need to change!~!
if len(X_tmp)>10:
Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value)
#except:
else:
Z_set=Z_tmp
temp_x=X_tmp[len(Z_set)-1]
temp_y=Y_tmp[len(Z_set)-1]
distance=0
distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y)
if distance_2_old<distance_check: # find a way to change so it is checking the distance from the first crop polyogn, concave_now.buffer(buffer)
tmp_x_last=temp_x
tmp_y_last=temp_y
crop_line.append([X_tmp[len(Z_set)-1], Y_tmp[len(Z_set)-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise crop by the distance_check
else:
exceed_list.append(1)
try:
tmp_x_last=X_tmp[len(X_tmp)-distance_check] #beacuse this is a 1m DSM, this works
tmp_y_last=Y_tmp[len(Y_tmp)-distance_check]
crop_line.append([tmp_x_last, tmp_y_last])
top_line.append([X_tmp[0], Y_tmp[0]])
except:
print('problem with the last crop point, keeping whole line')
crop_line.append([X_tmp[-1], Y_tmp[-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
if direction=='north_south':
fixed_now=line['X']
elif direction=='west_east':
fixed_now=line['Y']
X_tmp=[line['X']]
Y_tmp=[line['Y']]
Z_tmp=[line['Z']]
else:
if direction=='north_south':
fixed_now=line['X']
elif direction=='west_east':
fixed_now=line['Y']
X_tmp=[line['X']]
Y_tmp=[line['Y']]
Z_tmp=[line['Z']]
#for the last line
derivative, chainage=forward_derivative(X_tmp, Y_tmp, Z_tmp)
if len(X_tmp)>10:
Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value)
#except:
else:
Z_set=Z_tmp
temp_x=X_tmp[len(Z_set)-1]
temp_y=Y_tmp[len(Z_set)-1]
distance=0
X_set=X_tmp[0:len(Z_set)]
Y_set=Y_tmp[0:len(Z_set)]
#write to new data frame
#if len(Z_set)>0:
# for i in range(0, len(Z_set)):
# processed_data =processed_data.append({'X':X_set[i],'Y':Y_set[i],'Z':Z_set[i],'r':r_set[i],'g':g_set[i],'b':b_set[i]}, ignore_index=True)
#add to crop line
distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y)
if distance_2_old<distance_check: # find a way to change so it is checking the distance from the first crop polyogn, concave_now.buffer(buffer)
tmp_x_last=temp_x
tmp_y_last=temp_y
crop_line.append([X_tmp[len(Z_set)-1], Y_tmp[len(Z_set)-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise crop by the distance_check
else:
exceed_list.append(1)
tmp_x_last=X_tmp[len(X_tmp)-distance_check]
tmp_y_last=Y_tmp[len(Y_tmp)-distance_check]
crop_line.append(tmp_x_last, tmp_y_last)
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise dont add. straight line is better
if direction=='north_south':
y_filtered=nine_pt_moving_average([i[1] for i in crop_line])
crop_new=[[crop_line[i][0],y_filtered[i]] for i in range(0, len(crop_line))]
elif direction=='west_east':
x_filtered=nine_pt_moving_average([i[0] for i in crop_line])
crop_new=[[x_filtered[i],crop_line[i][1]] for i in range(0, len(crop_line))]
for_shape=crop_new+top_line[::-1]
for_shape.append(crop_new[0])
#print('exceeded the manual distance_check %s%% of the time. manually cropping undertaken' % (round(len(exceed_list)/a,2)*100))
#making the cropping shapefile
#print('making the crop polygon')
# Export polygon as shapefile
df = gpd.GeoDataFrame(geometry=[Polygon(for_shape)])
df.crs = {'init': 'epsg:283{}'.format(zone), 'no_defs': True}
df.to_file(shp_name, driver='ESRI Shapefile')
return None
def remove_temp_files(directory):
for f in os.listdir(directory):
os.unlink(os.path.join(directory, f))
return None
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'input_file',
metavar='PARAMS_FILE',
help='name of parameter file',
default=None)
# Print usage if no arguments are provided
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# read the parameters file and scroll through it
input_file = args.input_file
params_file=pd.read_excel(input_file, sheet_name="PARAMS")
for i, row in params_file.iterrows():
print("Starting to process %s" % row['Beach'])
input_las = row['INPUT LAS']
initial_crop_poly = row['INITIAL CROP POLY']
lasground_step = row['LASGROUND STEP']
zone_MGA = row['ZONE MGA']
check_value = row['CHECK VALUE']
direct = row['DIRECTION']
check_distance = row['CHECK DISTANCE']
las_dir = row['LAS CLASSIFIED FOLDER']
shp_dir = row['SHP SWASH FOLDER']
tmp_dir = row['TMP FOLDER']
# Get base name of input las
las_basename = os.path.splitext(os.path.basename(input_las))[0]
# Crop to beach boundary
print('Clipping...')
las_data = call_lastools('lasclip', input=input_las, output='-stdout',
args=['-poly', initial_crop_poly], verbose=False)
# Classify ground points
print('Classifying ground...')
las_data = call_lastools('lasground_new', input=las_data, output='-stdout',
args=['-step', lasground_step], verbose=False)
# Save classified point cloud
las_name = os.path.join(las_dir, las_basename + '.las')
with open (las_name, 'wb') as f:
f.write(las_data)
# Interpolate point cloud onto a grid
print('Interpolating to grid...')
xyz_name = os.path.join(tmp_dir, las_basename + '.xyz')
call_lastools('las2dem', input=las_data, output=xyz_name,
args=['-step', 1], verbose=False)
# Make runup clipping mask from gridded point cloud
print('Calculating runup clipping mask...')
shp_name = os.path.join(shp_dir, las_basename + '.shp')
polygon_wave_runup(xyz_name, direct, shp_name, check_value, check_distance, zone_MGA)
#NOTE THAT YOU NEED TO CHECK THE OUTPUT SHP FILE AND ADJUST AS REQUIRED
#delete the temp files
remove_temp_files(tmp_dir)
if __name__ == '__main__':
main()

@ -13,7 +13,9 @@
import os
import io
import re
import sys
import math
import argparse
import datetime
import subprocess
import numpy as np
@ -91,7 +93,7 @@ def calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volu
# Get Nielsen erosion volumes
chainage = profiles.loc[:, current_date].dropna().index
elevation = profiles.loc[:, current_date].dropna().values
volume = neilson_volumes.volume_available(chainage, elevation, ch_min)
volume = nielsen_volumes.volume_available(chainage, elevation, ch_min)
# Update spreadsheet
volumes.loc[profile_name, date] = volume
@ -101,74 +103,100 @@ def calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volu
volumes.to_csv(csv_vol)
input_file = 'Parameter Files/las-manipulation-survey-2.xlsx'
params_file=pd.read_excel(input_file, sheet_name="PARAMS")
for i, row in params_file.iterrows():
print("Starting to process %s" % row['Beach'])
beach=row['Beach']
survey_date = row['SURVEY DATE']
original_las = row['INPUT LAS']
classified_las_dir = row['LAS CLASSIFIED FOLDER']
shp_swash_dir = row['SHP SWASH FOLDER']
crop_heatmap_poly = row['HEATMAP CROP POLY']
output_las_dir = row['LAS OUTPUT FOLDER']
zone_MGA = row['ZONE MGA']
output_poly_dir = row['SHP RASTER FOLDER']
output_tif_dir = row['TIF OUTPUT FOLDER']
cp_csv = row['INPUT CSV']
profile_limit_file = row['PROFILE LIMIT FILE']
csv_output_dir = row['CSV OUTPUT FOLDER']
graph_loc = row['PNG OUTPUT FOLDER']
volume_output_dir = row['CSV VOLUMES FOLDER']
tmp_dir = row['TMP FOLDER']
# Get base name of input las
las_basename = os.path.splitext(os.path.basename(original_las))[0]
# Get name of input point cloud
input_las = os.path.join(classified_las_dir, las_basename + '.las')
# Get name of swash cropping polygon
crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp')
# Crop point cloud to swash boundary
las_data = call_lastools('lasclip', input=input_las, output='-stdout',
args=['-poly', crop_swash_poly], verbose=False)
# Apply sea-side clipping polygon
las_data = call_lastools('lasclip', input=las_data, output='-stdout',
args=['-poly', crop_heatmap_poly], verbose=False)
# Create clipping polygon for heatmap raster
shp_name = os.path.join(output_poly_dir, las_basename + '.shp')
call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False)
# Make a raster from point cloud
tif_name = os.path.join(output_tif_dir, las_basename + '.tif')
call_lastools('blast2dem', input=las_data, output=tif_name,
args=['-step', 0.2], verbose=False)
# Extract elevations along profiles from triangulated surface
df = extract_pts(
las_data,
cp_csv,
survey_date,
beach,
args=['-parse', 'sxyz', '-keep_class', '2'],
verbose=False)
# Update survey profiles
update_survey_output(df, csv_output_dir)
# Get landward limit of surveys
ch_limits = pd.read_excel(profile_limit_file, index_col='Profile')
# Plot profiles, and save sand volumes for current beach
profile_names = df['Profile'].unique()
for profile_name in profile_names:
plot_profiles(profile_name, survey_date, csv_output_dir, graph_loc, ch_limits)
calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volume_output_dir)
# Remove temprary files
remove_temp_files(tmp_dir)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'input_file',
metavar='PARAMS_FILE',
help='name of parameter file',
default=None)
# Print usage if no arguments are provided
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# read the parameters file and scroll through it
input_file = args.input_file
params_file=pd.read_excel(input_file, sheet_name="PARAMS")
for i, row in params_file.iterrows():
print("Starting to process %s" % row['Beach'])
beach=row['Beach']
survey_date = row['SURVEY DATE']
original_las = row['INPUT LAS']
classified_las_dir = row['LAS CLASSIFIED FOLDER']
shp_swash_dir = row['SHP SWASH FOLDER']
crop_heatmap_poly = row['HEATMAP CROP POLY']
output_las_dir = row['LAS OUTPUT FOLDER']
zone_MGA = row['ZONE MGA']
output_poly_dir = row['SHP RASTER FOLDER']
output_tif_dir = row['TIF OUTPUT FOLDER']
cp_csv = row['INPUT CSV']
profile_limit_file = row['PROFILE LIMIT FILE']
csv_output_dir = row['CSV OUTPUT FOLDER']
graph_loc = row['PNG OUTPUT FOLDER']
volume_output_dir = row['CSV VOLUMES FOLDER']
tmp_dir = row['TMP FOLDER']
# Get base name of input las
las_basename = os.path.splitext(os.path.basename(original_las))[0]
# Get name of input point cloud
input_las = os.path.join(classified_las_dir, las_basename + '.las')
# Get name of swash cropping polygon
crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp')
# Crop point cloud to swash boundary
print('Cropping swash...')
las_data = call_lastools('lasclip', input=input_las, output='-stdout',
args=['-poly', crop_swash_poly], verbose=False)
# Apply sea-side clipping polygon
print('Cropping back of beach...')
las_data = call_lastools('lasclip', input=las_data, output='-stdout',
args=['-poly', crop_heatmap_poly], verbose=False)
# Create clipping polygon for heatmap raster
print('Creating heat map cropping polygon...')
shp_name = os.path.join(output_poly_dir, las_basename + '.shp')
call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False)
# Make a raster from point cloud
print('Creating heat map raster...')
tif_name = os.path.join(output_tif_dir, las_basename + '.tif')
call_lastools('blast2dem', input=las_data, output=tif_name,
args=['-step', 0.2], verbose=False)
# Extract elevations along profiles from triangulated surface
print('Extracting profile elevations...')
df = extract_pts(
las_data,
cp_csv,
survey_date,
beach,
args=['-parse', 'sxyz', '-keep_class', '2'],
verbose=False)
# Update survey profiles
update_survey_output(df, csv_output_dir)
# Get landward limit of surveys
ch_limits = pd.read_excel(profile_limit_file, index_col='Profile')
# Plot profiles, and save sand volumes for current beach
print('Updating figures...')
profile_names = df['Profile'].unique()
for profile_name in profile_names:
plot_profiles(profile_name, survey_date, csv_output_dir, graph_loc, ch_limits)
calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volume_output_dir)
# Remove temprary files
remove_temp_files(tmp_dir)
if __name__ == '__main__':
main()

Loading…
Cancel
Save