diff --git a/las_manipulation.py b/las_manipulation.py index 7a393cd..1a43355 100644 --- a/las_manipulation.py +++ b/las_manipulation.py @@ -1,414 +1,413 @@ -import os -import sys -import argparse -import subprocess -from tqdm import tqdm -import numpy as np -from scipy import interpolate -import pandas as pd -import geopandas as gpd -from shapely.geometry import Point, Polygon - -from survey_tools import call_lastools - - -def remove_problems(x_list, y_list, z_list, x_now, y_now, check_value): - - z_ave=nine_pt_moving_average(z_list) - deriv_ave, chainage=forward_derivative(x_list, y_list, z_ave) - deriv_real, chainage=two_point_derivative(x_list, y_list, z_list) - - #first find the reference contour on the beach - #index_contour, x_now, y_now, distance=find_beach_reference_contour_choose_closest(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave, check_value) - index_contour, x_now, y_now, distance=find_beach_reference_contour(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave,deriv_real,check_value) - if index_contournat_dev: - break - else: - i=index_contour - - z_return=z_list[0:i] - chainage_return=chainage[0:i] - return z_return, chainage_return, x_now, y_now, distance - -def two_point_derivative(x_list, y_list, z_list): - chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))] - deriv=[(z_list[i+1]-z_list[i-1])/(chain[i+1]-chain[i-1]) for i in range(1, len(z_list)-1)] - - deriv.insert(0,0) - deriv.append(0) - - return deriv, chain - -def forward_derivative(x_list, y_list, z_list): - chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))] - deriv=[(z_list[i]-z_list[i-1])/(chain[i]-chain[i-1]) for i in range(0, len(z_list)-1)] - - deriv.insert(0,0) - - return deriv, chain - -def find_first_over_reference(z_list, value): - i=len(z_list)-1 - - while i>0 and z_list[i]len(z_list)-5: - ave=np.mean([z_list[j] for j in range(i-4,len(z_list))]) - else: - ave=np.mean([z_list[j] for j in range(i-4,i+5)]) - - move_ave.append(ave) - i=i+1 - return move_ave - -def find_neg_derivative(z_list, deriv_list): - i=len(z_list)-5 - while z_list[i]>=0 and z_list[i+1]>=0 and z_list[i+2]>=0 and z_list[i+3]>=0 and z_list[i+4]>=0: - i=i-1 - - return i - -def find_beach_reference_contour_choose_closest(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list, check_value): - #note that z_list should be the 9 point moving average - #assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD - i=0 - choice_list=[] - distance_list=[] - if z_ave_list[i]>check_value: - state_now='over' - else: - state_now='under' - - while icheck_value: #only keep if it is downward sloping - state_now='over' - elif state_now=='over' and z_ave_list[i]0 and x_last==None: #choose the first time for the first point - i=choice_list[0] - distance=0 - elif len(choice_list)>0 and x_last!=None: - assert(len(choice_list)==len(distance_list)) - i=choice_list[distance_list.index(min(distance_list))] - distance=min(distance_list) - - - if i>=len(x_list): - i=len(x_list)-1 - if x_last!=None: - distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5 - else: - distance=0 - - x=x_list[i] - y=y_list[i] - - return i, x, y, distance - -def find_beach_reference_contour(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list,deriv_real_list, check_value): - #note that z_list should be the 9 point moving average - #assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD - - i=len(z_ave_list)-1 - while i>=0 and (z_ave_list[i]>check_value+2 or z_ave_list[i]0 or max([abs(i) for i in deriv_real_list[max(0,i-7):i]]+[0])>0.3):#beaches are shallow sloping, low - i=i-1 - - #find the first time it gets to check_value after this - while i>=0 and z_ave_list[i]0 and z_ave_list[i]10: - Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value) - #except: - else: - Z_set=Z_tmp - temp_x=X_tmp[len(Z_set)-1] - temp_y=Y_tmp[len(Z_set)-1] - distance=0 - - distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y) - if distance_2_old10: - Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value) - #except: - else: - Z_set=Z_tmp - temp_x=X_tmp[len(Z_set)-1] - temp_y=Y_tmp[len(Z_set)-1] - distance=0 - X_set=X_tmp[0:len(Z_set)] - Y_set=Y_tmp[0:len(Z_set)] - - - #write to new data frame - #if len(Z_set)>0: - # for i in range(0, len(Z_set)): - # processed_data =processed_data.append({'X':X_set[i],'Y':Y_set[i],'Z':Z_set[i],'r':r_set[i],'g':g_set[i],'b':b_set[i]}, ignore_index=True) - #add to crop line - distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y) - if distance_2_oldnat_dev: + break + else: + i=index_contour + + z_return=z_list[0:i] + chainage_return=chainage[0:i] + return z_return, chainage_return, x_now, y_now, distance + +def two_point_derivative(x_list, y_list, z_list): + chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))] + deriv=[(z_list[i+1]-z_list[i-1])/(chain[i+1]-chain[i-1]) for i in range(1, len(z_list)-1)] + + deriv.insert(0,0) + deriv.append(0) + + return deriv, chain + +def forward_derivative(x_list, y_list, z_list): + chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))] + deriv=[(z_list[i]-z_list[i-1])/(chain[i]-chain[i-1]) for i in range(0, len(z_list)-1)] + + deriv.insert(0,0) + + return deriv, chain + +def find_first_over_reference(z_list, value): + i=len(z_list)-1 + + while i>0 and z_list[i]len(z_list)-5: + ave=np.mean([z_list[j] for j in range(i-4,len(z_list))]) + else: + ave=np.mean([z_list[j] for j in range(i-4,i+5)]) + + move_ave.append(ave) + i=i+1 + return move_ave + +def find_neg_derivative(z_list, deriv_list): + i=len(z_list)-5 + while z_list[i]>=0 and z_list[i+1]>=0 and z_list[i+2]>=0 and z_list[i+3]>=0 and z_list[i+4]>=0: + i=i-1 + + return i + +def find_beach_reference_contour_choose_closest(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list, check_value): + #note that z_list should be the 9 point moving average + #assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD + i=0 + choice_list=[] + distance_list=[] + if z_ave_list[i]>check_value: + state_now='over' + else: + state_now='under' + + while icheck_value: #only keep if it is downward sloping + state_now='over' + elif state_now=='over' and z_ave_list[i]0 and x_last==None: #choose the first time for the first point + i=choice_list[0] + distance=0 + elif len(choice_list)>0 and x_last!=None: + assert(len(choice_list)==len(distance_list)) + i=choice_list[distance_list.index(min(distance_list))] + distance=min(distance_list) + + + if i>=len(x_list): + i=len(x_list)-1 + if x_last!=None: + distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5 + else: + distance=0 + + x=x_list[i] + y=y_list[i] + + return i, x, y, distance + +def find_beach_reference_contour(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list,deriv_real_list, check_value): + #note that z_list should be the 9 point moving average + #assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD + + i=len(z_ave_list)-1 + while i>=0 and (z_ave_list[i]>check_value+2 or z_ave_list[i]0 or max([abs(i) for i in deriv_real_list[max(0,i-7):i]]+[0])>0.3):#beaches are shallow sloping, low + i=i-1 + + #find the first time it gets to check_value after this + while i>=0 and z_ave_list[i]0 and z_ave_list[i]10: + Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value) + #except: + else: + Z_set=Z_tmp + temp_x=X_tmp[len(Z_set)-1] + temp_y=Y_tmp[len(Z_set)-1] + distance=0 + + distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y) + if distance_2_old10: + Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value) + #except: + else: + Z_set=Z_tmp + temp_x=X_tmp[len(Z_set)-1] + temp_y=Y_tmp[len(Z_set)-1] + distance=0 + X_set=X_tmp[0:len(Z_set)] + Y_set=Y_tmp[0:len(Z_set)] + + + #write to new data frame + #if len(Z_set)>0: + # for i in range(0, len(Z_set)): + # processed_data =processed_data.append({'X':X_set[i],'Y':Y_set[i],'Z':Z_set[i],'r':r_set[i],'g':g_set[i],'b':b_set[i]}, ignore_index=True) + #add to crop line + distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y) + if distance_2_old