|
|
|
@ -96,21 +96,57 @@ def make_raster(las, output, lastools_loc, keep_only_ground=False, step=0.2):
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_pts(las, in_csv, tmp_csv, lastools_loc, keep_only_ground=True):
|
|
|
|
|
# output is the full path and filename (inc extension) to put in
|
|
|
|
|
path_2_lascontrol=lastools_loc+"\\bin\\lascontrol"
|
|
|
|
|
def extract_pts(las_in, cp_in, survey_date, keep_only_ground=True):
|
|
|
|
|
"""Extract elevations from a las surface based on x and y coordinates.
|
|
|
|
|
|
|
|
|
|
if keep_only_ground==True:
|
|
|
|
|
command="%s -i %s -cp %s -keep_class 2 -parse sxyz -cp_out %s" % (path_2_lascontrol, las, in_csv, tmp_csv)
|
|
|
|
|
else:
|
|
|
|
|
command="%s -i %s -cp %s -parse sxyz -cp_out %s" % (path_2_lascontrol, las, in_csv, tmp_csv)
|
|
|
|
|
Requires lastools in system path.
|
|
|
|
|
|
|
|
|
|
returncode,output = check_output(command, False)
|
|
|
|
|
if returncode!= 0:
|
|
|
|
|
print("Error. lascontrol failed on %s" % las.split('//')[-1].split('.')[0])
|
|
|
|
|
print(output)
|
|
|
|
|
else:
|
|
|
|
|
return None
|
|
|
|
|
Args:
|
|
|
|
|
las_in: input point cloud (las)
|
|
|
|
|
cp_in: point coordinates with columns: id, x, y, z (csv)
|
|
|
|
|
survey_date: survey date string, e.g. '19700101'
|
|
|
|
|
keep_only_ground: only keep points classified as 'ground' (boolean)
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Dataframe containing input coordinates with extracted elevations
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
cmd = ['lascontrol', '-i', las_in, '-cp', cp_in, '-parse', 'sxyz']
|
|
|
|
|
|
|
|
|
|
if keep_only_ground == True:
|
|
|
|
|
cmd += ['-keep_class', '2']
|
|
|
|
|
|
|
|
|
|
# Call lastools
|
|
|
|
|
process = subprocess.Popen(
|
|
|
|
|
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
|
|
|
stdout, stderr = process.communicate()
|
|
|
|
|
errcode = process.returncode
|
|
|
|
|
|
|
|
|
|
# Handle errors, if detected
|
|
|
|
|
if errcode != 0:
|
|
|
|
|
print("Error. lascontrol failed on {}".format(
|
|
|
|
|
os.path.basename(las_in)))
|
|
|
|
|
print(stderr.decode())
|
|
|
|
|
|
|
|
|
|
# Load result into pandas dataframe
|
|
|
|
|
df = pd.read_csv(io.BytesIO(stdout))
|
|
|
|
|
|
|
|
|
|
# Tidy up dataframe
|
|
|
|
|
df = df.drop(columns=['diff'])
|
|
|
|
|
df['lidar_z'] = pd.to_numeric(df['lidar_z'], errors='coerce')
|
|
|
|
|
df['Beach'] = beach
|
|
|
|
|
df = df[[
|
|
|
|
|
'Beach', 'ProfileNum', 'Easting', 'Northing', 'Chainage', 'lidar_z'
|
|
|
|
|
]]
|
|
|
|
|
|
|
|
|
|
# Rename columns
|
|
|
|
|
new_names = {
|
|
|
|
|
'ProfileNum': 'Profile',
|
|
|
|
|
'lidar_z': 'Elevation_{}'.format(survey_date),
|
|
|
|
|
}
|
|
|
|
|
df = df.rename(columns=new_names)
|
|
|
|
|
|
|
|
|
|
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|