Fix formatting

develop
Chris Leaman 6 years ago
parent 65f5f2b2c0
commit b7704c2d35

@ -59,7 +59,9 @@ def forecast_twl(
df_twl["beta"] = pd.concat(results) df_twl["beta"] = pd.concat(results)
# Estimate runup # Estimate runup
R2, setup, S_total, S_inc, S_ig = runup_function(Hs0=df_twl['Hs0'].tolist(), Tp=df_twl["Tp"].tolist(), beta=df_twl["beta"].tolist()) R2, setup, S_total, S_inc, S_ig = runup_function(
Hs0=df_twl["Hs0"].tolist(), Tp=df_twl["Tp"].tolist(), beta=df_twl["beta"].tolist()
)
df_twl["R2"] = R2 df_twl["R2"] = R2
df_twl["setup"] = setup df_twl["setup"] = setup

@ -12,7 +12,7 @@ def sto06(Hs0, Tp, beta):
df = pd.DataFrame({"Hs0": Hs0, "Tp": Tp, "beta": beta}, index=[x for x in range(0, np.size(Hs0))]) df = pd.DataFrame({"Hs0": Hs0, "Tp": Tp, "beta": beta}, index=[x for x in range(0, np.size(Hs0))])
df["Lp"] = 9.8 * df['Tp'] ** 2 / 2 / np.pi df["Lp"] = 9.8 * df["Tp"] ** 2 / 2 / np.pi
# General equation # General equation
df["S_ig"] = pd.to_numeric(0.06 * np.sqrt(df["Hs0"] * df["Lp"]), errors="coerce") df["S_ig"] = pd.to_numeric(0.06 * np.sqrt(df["Hs0"] * df["Lp"]), errors="coerce")

@ -200,7 +200,7 @@ def parse_profiles_and_sites(profiles_mat):
# Our z values can come from these columns, depending on the isgood flag. # Our z values can come from these columns, depending on the isgood flag.
# Let's reoganise them into a list of list # Let's reoganise them into a list of list
z_names = ["Zpre", 'Zpost', 'Zrec1', 'Zrec2', 'Zrec3', 'Zrec4'] z_names = ["Zpre", "Zpost", "Zrec1", "Zrec2", "Zrec3", "Zrec4"]
z_cols = [mat_data[col] for col in z_names] z_cols = [mat_data[col] for col in z_names]
z_sites = [] z_sites = []
for cols in zip(*z_cols): for cols in zip(*z_cols):
@ -226,8 +226,6 @@ def parse_profiles_and_sites(profiles_mat):
# Want to calculation the orientation # Want to calculation the orientation
orientation = {} orientation = {}
for x, lat, lon, z_site, easting, northing in zip( for x, lat, lon, z_site, easting, northing in zip(
mat_data["x"][i], mat_data["x"][i],
mat_data["lats"][i], mat_data["lats"][i],
@ -237,13 +235,12 @@ def parse_profiles_and_sites(profiles_mat):
mat_data["northings"][i], mat_data["northings"][i],
): ):
profile_type = None profile_type = None
for j, is_good in enumerate([1] + mat_data["isgood"][i]): for j, is_good in enumerate([1] + mat_data["isgood"][i]):
# Assumes the first profile is always good and is the prestorm profike # Assumes the first profile is always good and is the prestorm profike
if j == 0: if j == 0:
profile_type = 'prestorm' profile_type = "prestorm"
z = z_site[j] z = z_site[j]
land_lim = np.nan land_lim = np.nan
@ -253,7 +250,7 @@ def parse_profiles_and_sites(profiles_mat):
# Takes the first isgood profile as the post storm profile # Takes the first isgood profile as the post storm profile
else: else:
profile_type = 'poststorm' profile_type = "poststorm"
z = z_site[j] z = z_site[j]
land_lim = mat_data["landlims"][i][j] land_lim = mat_data["landlims"][i][j]
@ -287,10 +284,9 @@ def parse_profiles_and_sites(profiles_mat):
) )
# Stop looking at profiles if we've got our post-storm profile # Stop looking at profiles if we've got our post-storm profile
if profile_type == 'poststorm': if profile_type == "poststorm":
break break
orientation = math.degrees( orientation = math.degrees(
math.atan2( math.atan2(
orientation["land_northing"] - orientation["sea_northing"], orientation["land_northing"] - orientation["sea_northing"],
@ -334,8 +330,7 @@ def remove_zeros(df_profiles):
) )
df_profile = df_profiles[idx_site] df_profile = df_profiles[idx_site]
x_last_ele = df_profile[df_profile.z == 0].index.get_level_values("x")[0] x_last_ele = df_profile[df_profile.z == 0].index.get_level_values("x")[0]
df_profiles.loc[idx_site & (df_profiles.index.get_level_values("x") > x_last_ele), df_profiles.loc[idx_site & (df_profiles.index.get_level_values("x") > x_last_ele), "z"] = np.nan
"z"] = np.nan
logger.info("Removed zeros from end of profiles") logger.info("Removed zeros from end of profiles")
return df_profiles return df_profiles

Loading…
Cancel
Save