Initial commit of forecasted TWLs function
parent
5159239b66
commit
91f8b8bae6
@ -0,0 +1,267 @@
|
|||||||
|
import logging.config
|
||||||
|
import os
|
||||||
|
from multiprocessing import Pool
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import numpy.ma as ma
|
||||||
|
import pandas as pd
|
||||||
|
from scipy import stats
|
||||||
|
|
||||||
|
from src.analysis.runup_models import sto06_individual, sto06
|
||||||
|
|
||||||
|
logging.config.fileConfig('./src/logging.conf', disable_existing_loggers=False)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def forecast_twl(df_tides, df_profiles, df_waves, df_profile_features, runup_function, n_processes=4,
|
||||||
|
slope='foreshore'):
|
||||||
|
# Use df_waves as a base
|
||||||
|
df_twl = df_waves.copy()
|
||||||
|
|
||||||
|
# Merge tides
|
||||||
|
logger.info('Merging tides')
|
||||||
|
df_twl = df_twl.merge(df_tides, left_index=True, right_index=True)
|
||||||
|
|
||||||
|
# Estimate foreshore slope. Do the analysis per site_id. This is so we only have to query the x and z
|
||||||
|
# cross-section profiles once per site.
|
||||||
|
logger.info('Calculating beach slopes')
|
||||||
|
site_ids = df_twl.index.get_level_values('site_id').unique()
|
||||||
|
# site_ids = [x for x in site_ids if 'NARRA' in x] # todo remove this - for testing narrabeen only
|
||||||
|
|
||||||
|
if slope == 'foreshore':
|
||||||
|
# Process each site_id with a different process and combine results at the end
|
||||||
|
with Pool(processes=n_processes) as pool:
|
||||||
|
results = pool.starmap(foreshore_slope_for_site_id,
|
||||||
|
[(site_id, df_twl, df_profiles) for site_id in site_ids])
|
||||||
|
df_twl['beta'] = pd.concat(results)
|
||||||
|
|
||||||
|
elif slope == 'mean':
|
||||||
|
# todo mean beach profile
|
||||||
|
df_temp = df_twl.join(df_profile_features, how='inner')
|
||||||
|
df_temp['mhw'] = 0.5
|
||||||
|
with Pool(processes=n_processes) as pool:
|
||||||
|
results = pool.starmap(mean_slope_for_site_id,
|
||||||
|
[(site_id, df_temp, df_profiles, 'dune_toe_z', 'mhw') for site_id in site_ids])
|
||||||
|
df_twl['beta'] = pd.concat(results)
|
||||||
|
|
||||||
|
# Estimate runup
|
||||||
|
R2, setup, S_total, S_inc, S_ig = runup_function(df_twl, Hs0_col='Hs0', Tp_col='Tp', beta_col='beta')
|
||||||
|
|
||||||
|
df_twl['R2'] = R2
|
||||||
|
df_twl['setup'] = setup
|
||||||
|
df_twl['S_total'] = S_total
|
||||||
|
|
||||||
|
# Estimate TWL
|
||||||
|
df_twl['R_high'] = df_twl['tide'] + df_twl['R2']
|
||||||
|
df_twl['R_low'] = df_twl['tide'] + 1.1 * df_twl['setup'] - 1.1 / 2 * df_twl['S_total']
|
||||||
|
|
||||||
|
# Drop unneeded columns
|
||||||
|
df_twl.drop(columns=['E', 'Exs', 'P', 'Pxs', 'dir'], inplace=True, errors='ignore')
|
||||||
|
|
||||||
|
return df_twl
|
||||||
|
|
||||||
|
|
||||||
|
def mean_slope_for_site_id(site_id, df_twl, df_profiles, top_elevation_col, btm_elevation_col):
|
||||||
|
"""
|
||||||
|
Calculates the foreshore slope values a given site_id. Returns a series (with same indicies as df_twl) of
|
||||||
|
foreshore slopes. This function is used to parallelize getting foreshore slopes as it is computationally
|
||||||
|
expensive, given the need to iterate for the foreshore slope.
|
||||||
|
:param site_id:
|
||||||
|
:param df_twl:
|
||||||
|
:param df_profiles:
|
||||||
|
:return: A dataframe with slope values calculated
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Get the prestorm beach profile
|
||||||
|
profile = df_profiles.query("site_id =='{}' and profile_type == 'prestorm'".format(site_id))
|
||||||
|
profile_x = profile.index.get_level_values('x').tolist()
|
||||||
|
profile_z = profile.z.tolist()
|
||||||
|
|
||||||
|
df_twl_site = df_twl.query("site_id == '{}'".format(site_id))
|
||||||
|
|
||||||
|
df_beta = df_twl_site.apply(lambda row: slope_from_profile(profile_x=profile_x, profile_z=profile_z,
|
||||||
|
top_elevation=row[top_elevation_col],
|
||||||
|
btm_elevation=row[btm_elevation_col],
|
||||||
|
method='end_points'), axis=1)
|
||||||
|
return df_beta
|
||||||
|
|
||||||
|
|
||||||
|
def foreshore_slope_for_site_id(site_id, df_twl, df_profiles):
|
||||||
|
"""
|
||||||
|
Calculates the foreshore slope values a given site_id. Returns a series (with same indicies as df_twl) of
|
||||||
|
foreshore slopes. This function is used to parallelize getting foreshore slopes as it is computationally
|
||||||
|
expensive, given the need to iterate for the foreshore slope.
|
||||||
|
:param site_id:
|
||||||
|
:param df_twl:
|
||||||
|
:param df_profiles:
|
||||||
|
:return: A dataframe with slope values calculated
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Get the prestorm beach profile
|
||||||
|
profile = df_profiles.query("site_id =='{}' and profile_type == 'prestorm'".format(site_id))
|
||||||
|
profile_x = profile.index.get_level_values('x').tolist()
|
||||||
|
profile_z = profile.z.tolist()
|
||||||
|
|
||||||
|
df_twl_site = df_twl.query("site_id == '{}'".format(site_id))
|
||||||
|
|
||||||
|
df_beta = df_twl_site.apply(lambda row: foreshore_slope_from_profile(profile_x=profile_x, profile_z=profile_z,
|
||||||
|
tide=row.tide,
|
||||||
|
runup_function=sto06_individual,
|
||||||
|
Hs0=row.Hs0,
|
||||||
|
Tp=row.Tp), axis=1)
|
||||||
|
return df_beta
|
||||||
|
|
||||||
|
|
||||||
|
def foreshore_slope_from_profile(profile_x, profile_z, tide, runup_function, **kwargs):
|
||||||
|
"""
|
||||||
|
Returns the foreshore slope given the beach profile, water level (tide) and runup_function. Since foreshore slope is
|
||||||
|
dependant on the setup elevation and swash magnitude, which in tern is dependant on the foreshore slope, the process
|
||||||
|
requires iteration to solve.
|
||||||
|
:param profile_x:
|
||||||
|
:param profile_z:
|
||||||
|
:param tide:
|
||||||
|
:param runup_function: The name of a function which will return runup values (refer to runup_models.py)
|
||||||
|
:param kwargs: Additional keyword arguments which will be passed to the runup_function (usually Hs0, Tp).
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Sometimes there is no tide value for a record, so return None
|
||||||
|
if np.isnan(tide):
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Initalize estimates
|
||||||
|
max_number_iterations = 20
|
||||||
|
iteration_count = 0
|
||||||
|
min_accuracy = 0.001
|
||||||
|
beta = 0.05
|
||||||
|
|
||||||
|
while True:
|
||||||
|
R2, setup, S_total, _, _ = runup_function(beta=beta, **kwargs)
|
||||||
|
beta_new = slope_from_profile(profile_x=profile_x, profile_z=profile_z, method='end_points',
|
||||||
|
top_elevation=tide + setup + S_total / 2,
|
||||||
|
btm_elevation=tide + setup - S_total / 2)
|
||||||
|
|
||||||
|
# Return None if we can't find a slope, usually because the elevations we've specified are above/below our
|
||||||
|
# profile x and z coordinates.
|
||||||
|
if beta_new is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# If slopes do not change much between interactions, return the slope
|
||||||
|
if abs(beta_new - beta) < min_accuracy:
|
||||||
|
return beta
|
||||||
|
|
||||||
|
# If we can't converge a solution, return None
|
||||||
|
if iteration_count > max_number_iterations:
|
||||||
|
return None
|
||||||
|
|
||||||
|
beta = beta_new
|
||||||
|
iteration_count += 1
|
||||||
|
|
||||||
|
|
||||||
|
def slope_from_profile(profile_x, profile_z, top_elevation, btm_elevation, method='end_points'):
|
||||||
|
"""
|
||||||
|
Returns a slope (beta) from a bed profile, given the top and bottom elevations of where the slope should be taken.
|
||||||
|
:param x: List of x bed profile coordinates
|
||||||
|
:param z: List of z bed profile coordinates
|
||||||
|
:param top_elevation: Top elevation of where to take the slope
|
||||||
|
:param btm_elevation: Bottom elevation of where to take the slope
|
||||||
|
:param method: Method used to calculate slope (end_points or least_squares)
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Need all data to get the slope
|
||||||
|
if any([x is None for x in [profile_x, profile_z, top_elevation, btm_elevation]]):
|
||||||
|
return None
|
||||||
|
|
||||||
|
end_points = {
|
||||||
|
'top': {
|
||||||
|
'z': top_elevation,
|
||||||
|
},
|
||||||
|
'btm': {
|
||||||
|
'z': btm_elevation,
|
||||||
|
}}
|
||||||
|
|
||||||
|
for end_type in end_points.keys():
|
||||||
|
elevation = end_points[end_type]['z']
|
||||||
|
intersection_x = crossings(profile_x, profile_z, elevation)
|
||||||
|
|
||||||
|
# No intersections found
|
||||||
|
if len(intersection_x) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# One intersection
|
||||||
|
elif len(intersection_x) == 1:
|
||||||
|
end_points[end_type]['x'] = intersection_x[0]
|
||||||
|
|
||||||
|
# More than on intersection
|
||||||
|
else:
|
||||||
|
if end_type == 'top':
|
||||||
|
# For top elevation, take most seaward intersection
|
||||||
|
end_points[end_type]['x'] = intersection_x[-1]
|
||||||
|
else:
|
||||||
|
# For bottom elevation, take most landward intersection that is seaward of top elevation
|
||||||
|
end_points[end_type]['x'] = [x for x in intersection_x if x > end_points['top']['x']][0]
|
||||||
|
|
||||||
|
if method == 'end_points':
|
||||||
|
x_top = end_points['top']['x']
|
||||||
|
x_btm = end_points['btm']['x']
|
||||||
|
z_top = end_points['top']['z']
|
||||||
|
z_btm = end_points['btm']['z']
|
||||||
|
return -(z_top - z_btm) / (x_top - x_btm)
|
||||||
|
|
||||||
|
elif method == 'least_squares':
|
||||||
|
profile_mask = [True if end_points['top']['x'] < pts < end_points['btm']['x'] else False for pts in x]
|
||||||
|
slope_x = np.array(profile_x)[profile_mask].tolist()
|
||||||
|
slope_z = np.array(profile_z)[profile_mask].tolist()
|
||||||
|
slope, _, _, _, _ = stats.linregress(slope_x, slope_z)
|
||||||
|
return -slope
|
||||||
|
|
||||||
|
|
||||||
|
def crossings(profile_x, profile_z, constant_z):
|
||||||
|
"""
|
||||||
|
Finds the x coordinate of a z elevation for a beach profile. Much faster than using shapely to calculate
|
||||||
|
intersections since we are only interested in intersections of a constant value. Will return multiple
|
||||||
|
intersections if found. Used in calculating beach slope.
|
||||||
|
Adapted from https://stackoverflow.com/a/34745789
|
||||||
|
:param profile_x: List of x coordinates for the beach profile section
|
||||||
|
:param profile_z: List of z coordinates for the beach profile section
|
||||||
|
:param constant_z: Float of the elevation to find corresponding x coordinates
|
||||||
|
:return: List of x coordinates which correspond to the constant_z
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Remove nans to suppress warning messages
|
||||||
|
valid = ~ma.masked_invalid(profile_z).mask
|
||||||
|
profile_z = np.array(profile_z)[valid]
|
||||||
|
profile_x = np.array(profile_x)[valid]
|
||||||
|
|
||||||
|
# Normalize the 'signal' to zero.
|
||||||
|
# Use np.subtract rather than a list comprehension for performance reasons
|
||||||
|
z = np.subtract(profile_z, constant_z)
|
||||||
|
|
||||||
|
# Find all indices right before any crossing.
|
||||||
|
indicies = np.where(z[:-1] * z[1:] < 0)[0]
|
||||||
|
|
||||||
|
# Use linear interpolation to find intersample crossings.
|
||||||
|
return [profile_x[i] - (profile_x[i] - profile_x[i + 1]) / (z[i] - z[i + 1]) * (z[i]) for i in indicies]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
logger.info('Importing data')
|
||||||
|
data_folder = './data/interim'
|
||||||
|
df_waves = pd.read_csv(os.path.join(data_folder, 'waves.csv'), index_col=[0, 1])
|
||||||
|
df_tides = pd.read_csv(os.path.join(data_folder, 'tides.csv'), index_col=[0, 1])
|
||||||
|
df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0, 1, 2])
|
||||||
|
df_sites = pd.read_csv(os.path.join(data_folder, 'sites.csv'), index_col=[0])
|
||||||
|
df_profile_features = pd.read_csv(os.path.join(data_folder, 'profile_features.csv'), index_col=[0])
|
||||||
|
|
||||||
|
logger.info('Forecasting TWL')
|
||||||
|
|
||||||
|
df_twl_foreshore_slope_sto06 = forecast_twl(df_tides, df_profiles, df_waves, df_profile_features,
|
||||||
|
runup_function=sto06, slope='foreshore')
|
||||||
|
df_twl_foreshore_slope_sto06.to_csv(os.path.join(data_folder, 'twl_foreshore_slope_sto06.csv'))
|
||||||
|
|
||||||
|
df_twl_mean_slope_sto06 = forecast_twl(df_tides, df_profiles, df_waves, df_profile_features,
|
||||||
|
runup_function=sto06, slope='mean')
|
||||||
|
df_twl_mean_slope_sto06.to_csv(os.path.join(data_folder, 'twl_mean_slope_sto06.csv'))
|
||||||
|
|
||||||
|
logger.info('Done')
|
Loading…
Reference in New Issue