|
|
@ -4,7 +4,8 @@ import pandas as pd
|
|
|
|
from scipy.integrate import simps
|
|
|
|
from scipy.integrate import simps
|
|
|
|
|
|
|
|
|
|
|
|
from logs import setup_logging
|
|
|
|
from logs import setup_logging
|
|
|
|
from utils import crossings
|
|
|
|
from utils import crossings, get_i_or_default
|
|
|
|
|
|
|
|
from analysis.forecast_twl import get_mean_slope, get_intertidal_slope
|
|
|
|
|
|
|
|
|
|
|
|
logger = setup_logging()
|
|
|
|
logger = setup_logging()
|
|
|
|
|
|
|
|
|
|
|
@ -255,6 +256,7 @@ def create_observed_impacts(
|
|
|
|
index=df_profile_features.index.get_level_values("site_id").unique()
|
|
|
|
index=df_profile_features.index.get_level_values("site_id").unique()
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# TODO Review volume change with changing dune toe/crests
|
|
|
|
logger.info("Getting pre/post storm volumes")
|
|
|
|
logger.info("Getting pre/post storm volumes")
|
|
|
|
df_swash_vol_changes = volume_change(df_profiles, df_profile_features, zone="swash")
|
|
|
|
df_swash_vol_changes = volume_change(df_profiles, df_profile_features, zone="swash")
|
|
|
|
df_dune_face_vol_changes = volume_change(
|
|
|
|
df_dune_face_vol_changes = volume_change(
|
|
|
@ -271,10 +273,118 @@ def create_observed_impacts(
|
|
|
|
df_raw_features = pd.read_csv(raw_profile_features_csv, index_col=[0])
|
|
|
|
df_raw_features = pd.read_csv(raw_profile_features_csv, index_col=[0])
|
|
|
|
df_observed_impacts = overwrite_impacts(df_observed_impacts, df_raw_features)
|
|
|
|
df_observed_impacts = overwrite_impacts(df_observed_impacts, df_raw_features)
|
|
|
|
|
|
|
|
|
|
|
|
# TODO Calculate change in slopes, shoreline and volume
|
|
|
|
# Calculate change in mean slope
|
|
|
|
|
|
|
|
df_prestorm_mean_slopes = get_mean_slope(
|
|
|
|
|
|
|
|
df_profile_features, df_profiles, profile_type="prestorm"
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
df_poststorm_mean_slopes = get_mean_slope(
|
|
|
|
|
|
|
|
df_profile_features, df_profiles, profile_type="poststorm"
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
df_diff_mean_slopes = df_poststorm_mean_slopes - df_prestorm_mean_slopes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate change in intertidal slope
|
|
|
|
|
|
|
|
df_prestorm_intertidal_slopes = get_intertidal_slope(
|
|
|
|
|
|
|
|
df_profiles, profile_type="prestorm"
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
df_poststorm_intertidal_slopes = get_intertidal_slope(
|
|
|
|
|
|
|
|
df_profiles, profile_type="poststorm"
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
df_diff_intertidal_slopes = (
|
|
|
|
|
|
|
|
df_poststorm_intertidal_slopes - df_prestorm_intertidal_slopes
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Rename slope columns and merge into observed impacts
|
|
|
|
|
|
|
|
renames = [
|
|
|
|
|
|
|
|
{"df": df_prestorm_mean_slopes, "new_col_name": "beta_prestorm_mean"},
|
|
|
|
|
|
|
|
{"df": df_poststorm_mean_slopes, "new_col_name": "beta_poststorm_mean"},
|
|
|
|
|
|
|
|
{"df": df_diff_mean_slopes, "new_col_name": "beta_diff_mean"},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"df": df_prestorm_intertidal_slopes,
|
|
|
|
|
|
|
|
"new_col_name": "beta_prestorm_intertidal",
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"df": df_poststorm_intertidal_slopes,
|
|
|
|
|
|
|
|
"new_col_name": "beta_poststorm_intertidal",
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{"df": df_diff_intertidal_slopes, "new_col_name": "beta_diff_intertidal"},
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for rename in renames:
|
|
|
|
|
|
|
|
rename["df"].rename(
|
|
|
|
|
|
|
|
{"beta": rename["new_col_name"]}, axis="columns", inplace=True
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Join all our slopes into the observed impacts
|
|
|
|
|
|
|
|
df_observed_impacts = pd.concat(
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
df_prestorm_mean_slopes,
|
|
|
|
|
|
|
|
df_poststorm_mean_slopes,
|
|
|
|
|
|
|
|
df_diff_mean_slopes,
|
|
|
|
|
|
|
|
df_prestorm_intertidal_slopes,
|
|
|
|
|
|
|
|
df_poststorm_intertidal_slopes,
|
|
|
|
|
|
|
|
df_diff_intertidal_slopes,
|
|
|
|
|
|
|
|
df_observed_impacts,
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
axis=1,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate change in beach width
|
|
|
|
|
|
|
|
df_width_msl_prestorm = get_beach_width(
|
|
|
|
|
|
|
|
df_profile_features,
|
|
|
|
|
|
|
|
df_profiles,
|
|
|
|
|
|
|
|
profile_type="prestorm",
|
|
|
|
|
|
|
|
ele=0,
|
|
|
|
|
|
|
|
col_name="width_msl_prestorm",
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
df_width_msl_poststorm = get_beach_width(
|
|
|
|
|
|
|
|
df_profile_features,
|
|
|
|
|
|
|
|
df_profiles,
|
|
|
|
|
|
|
|
profile_type="poststorm",
|
|
|
|
|
|
|
|
ele=0,
|
|
|
|
|
|
|
|
col_name="width_msl_poststorm",
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
df_width_msl_change_m = (df_width_msl_poststorm - df_width_msl_prestorm).rename('df_width_msl_change_m')
|
|
|
|
|
|
|
|
df_width_msl_change_pct = (df_width_msl_change_m / df_width_msl_prestorm * 100).rename('df_width_msl_change_pct')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Join beach width change onto observed impacts dataframe
|
|
|
|
|
|
|
|
df_observed_impacts = pd.concat(
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
df_observed_impacts,
|
|
|
|
|
|
|
|
df_width_msl_prestorm,
|
|
|
|
|
|
|
|
df_width_msl_poststorm,
|
|
|
|
|
|
|
|
df_width_msl_change_m,
|
|
|
|
|
|
|
|
df_width_msl_change_pct,
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
axis=1,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Save dataframe to csv
|
|
|
|
# Save dataframe to csv
|
|
|
|
df_observed_impacts.to_csv(output_file, float_format="%.4f")
|
|
|
|
df_observed_impacts.to_csv(output_file, float_format="%.4f")
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("Saved to %s", output_file)
|
|
|
|
logger.info("Saved to %s", output_file)
|
|
|
|
logger.info("Done!")
|
|
|
|
logger.info("Done!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_beach_width(df_profile_features, df_profiles, profile_type, ele, col_name):
|
|
|
|
|
|
|
|
df_x_position = (
|
|
|
|
|
|
|
|
df_profiles.xs(profile_type, level="profile_type")
|
|
|
|
|
|
|
|
.dropna(subset=["z"])
|
|
|
|
|
|
|
|
.groupby("site_id")
|
|
|
|
|
|
|
|
.apply(
|
|
|
|
|
|
|
|
lambda x: get_i_or_default(
|
|
|
|
|
|
|
|
crossings(
|
|
|
|
|
|
|
|
profile_x=x.index.get_level_values("x").tolist(),
|
|
|
|
|
|
|
|
profile_z=x.z.tolist(),
|
|
|
|
|
|
|
|
constant_z=ele,
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
-1,
|
|
|
|
|
|
|
|
default=np.nan,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
.rename("x_position")
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
df_x_prestorm_dune_toe = df_profile_features.xs(
|
|
|
|
|
|
|
|
"prestorm", level="profile_type"
|
|
|
|
|
|
|
|
).dune_toe_x
|
|
|
|
|
|
|
|
df_width = (df_x_position - df_x_prestorm_dune_toe).rename(col_name)
|
|
|
|
|
|
|
|
return df_width
|
|
|
|