Add Power et al. (2018) runup model

develop
Chris Leaman 6 years ago
parent 4ea435a814
commit 6efae1c0da

@ -142,6 +142,18 @@ impacts: ./data/interim/impacts_forecasted_foreshore_slope_sto06.csv ./data/inte
--profile-type "prestorm" \ --profile-type "prestorm" \
--output-file "./data/interim/twl_mean_slope_nie91.csv" --output-file "./data/interim/twl_mean_slope_nie91.csv"
./data/interim/twl_mean_slope_pow18.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "pow18" \
--slope "mean" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_mean_slope_pow18.csv"
### IMPACTS ### IMPACTS
./data/interim/impacts_observed.csv: ./data/interim/profiles.csv ./data/interim/profile_features_crest_toes.csv ./data/raw/profile_features_chris_leaman/profile_features_chris_leaman.csv ./data/interim/impacts_observed.csv: ./data/interim/profiles.csv ./data/interim/profile_features_crest_toes.csv ./data/raw/profile_features_chris_leaman/profile_features_chris_leaman.csv
@ -175,6 +187,12 @@ impacts: ./data/interim/impacts_forecasted_foreshore_slope_sto06.csv ./data/inte
--forecasted-twl-csv "./data/interim/twl_mean_slope_nie91.csv" \ --forecasted-twl-csv "./data/interim/twl_mean_slope_nie91.csv" \
--output-file "./data/interim/impacts_forecasted_mean_slope_nie91.csv" --output-file "./data/interim/impacts_forecasted_mean_slope_nie91.csv"
./data/interim/impacts_forecasted_mean_slope_pow18.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_mean_slope_pow18.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_mean_slope_pow18.csv" \
--output-file "./data/interim/impacts_forecasted_mean_slope_pow18.csv"
### GEOJSONs ### GEOJSONs
geojsons: ./data/interim/impacts_forecasted_mean_slope_nie91.geojson ./data/interim/impacts_forecasted_mean_slope_nie91_R_high.geojson ./data/interim/impacts_forecasted_mean_slope_hol86.geojson ./data/interim/impacts_forecasted_mean_slope_hol86_R_high.geojson ./data/interim/impacts_forecasted_mean_slope_sto06.geojson ./data/interim/impacts_forecasted_mean_slope_sto06_R_high.geojson ./data/interim/profile_features_crest_toes.geojson ./data/interim/sites.geojson geojsons: ./data/interim/impacts_forecasted_mean_slope_nie91.geojson ./data/interim/impacts_forecasted_mean_slope_nie91_R_high.geojson ./data/interim/impacts_forecasted_mean_slope_hol86.geojson ./data/interim/impacts_forecasted_mean_slope_hol86_R_high.geojson ./data/interim/impacts_forecasted_mean_slope_sto06.geojson ./data/interim/impacts_forecasted_mean_slope_sto06_R_high.geojson ./data/interim/profile_features_crest_toes.geojson ./data/interim/sites.geojson

@ -330,7 +330,7 @@ def slope_from_profile(
"--runup-function", "--runup-function",
required=True, required=True,
help="", help="",
type=click.Choice(["sto06", "hol86", "nie91"]), type=click.Choice(["sto06", "hol86", "nie91", "pow18"]),
) )
@click.option( @click.option(
"--slope", required=True, help="", type=click.Choice(["foreshore", "mean"]) "--slope", required=True, help="", type=click.Choice(["foreshore", "mean"])

@ -1,6 +1,8 @@
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from logs import setup_logging
logger = setup_logging()
def sto06(Hs0, Tp, beta, **kwargs): def sto06(Hs0, Tp, beta, **kwargs):
@ -104,8 +106,98 @@ def atk18(Hs0, Tp, beta):
pass pass
def pow18(Hs0, Tp, beta): def pow18(Hs0, Tp, beta, r, **kwargs):
pass logger.info("Calculating runup using Power et al. (2018)")
df = pd.DataFrame(
{"Hs0": Hs0, "Tp": Tp, "beta": beta, "r": r},
index=[x for x in range(0, np.size(Hs0))],
)
df["Lp"] = 9.8 * df["Tp"] ** 2 / 2 / np.pi
df["x1"] = df["Hs0"] / df["Lp"]
df["x2"] = df["beta"]
df["x3"] = df["r"] / df["Hs0"]
df["R2"] = df.Hs0 * (
(df.x2 + (((df.x3 * 3) / np.exp(-5)) * ((3 * df.x3) * df.x3)))
+ ((((df.x1 + df.x3) - 2) - (df.x3 - df.x2)) + ((df.x2 - df.x1) - df.x3))
+ (((df.x3 ** df.x1) - (df.x3 ** (1 / 3))) - (np.exp(df.x2) ** (df.x1 * 3)))
+ np.sqrt((((df.x3 + df.x1) - df.x2) - (df.x2 + np.log10(df.x3))))
+ ((((df.x2 ** 2) / (df.x1 ** (1 / 3))) ** (df.x1 ** (1 / 3))) - np.sqrt(df.x3))
+ (
(df.x2 + ((df.x3 / df.x1) ** (1 / 3)))
+ (np.log(2) - (1 / (1 + np.exp(-(df.x2 + df.x3)))))
)
+ ((np.sqrt(df.x3) - (((3 ** 2) + 3) * (df.x2 ** 2))) ** 2)
+ ((((df.x3 * -5) ** 2) ** 2) + (((df.x3 + df.x3) * df.x1) / (df.x2 ** 2)))
+ np.log(
(np.sqrt(((df.x2 ** 2) + (df.x3 ** (1 / 3)))) + ((df.x2 + 3) ** (1 / 3)))
)
+ (
(((df.x1 / df.x3) * (-5 ** 2)) * (df.x3 ** 2))
- np.log10((1 / (1 + np.exp(-(df.x2 + df.x3)))))
)
+ (df.x1 ** df.x3)
+ np.exp(-((((df.x3 / df.x1) ** np.exp(4)) + (np.exp(df.x3) ** 3)) ** 2))
+ np.exp((np.log((df.x2 - df.x3)) - np.log(np.exp(-((-1 + df.x1) ** 2)))))
+ ((np.sqrt(4) * (((df.x3 / df.x2) - df.x2) - (0 - df.x1))) ** 2)
+ (2 * ((((-5 * df.x3) + df.x1) * (2 - df.x3)) - 2))
+ ((np.sqrt(4) * (((df.x3 / df.x2) - df.x2) - (0 - df.x1))) ** 2)
+ ((((-5 + df.x1) - df.x2) * (df.x2 - df.x3)) * ((df.x1 - df.x2) - (-4 ** -5)))
+ (np.exp(-((df.x2 + (-5 - df.x1)) ** 2)) + ((df.x2 + 5) * (df.x3 ** 2)))
+ np.sqrt(
1
/ (
1
+ np.exp(
-(
(np.exp(df.x1) - np.exp(-((df.x3 + df.x3) ** 2)))
+ ((df.x1 ** df.x3) - (df.x3 * 4))
)
)
)
)
+ (
(
np.exp(
-(
(
(
(
np.exp(
-(
(
(np.sqrt(df.x3) * 4)
+ (1 / (1 + np.exp(-(df.x2 + 2))))
)
** 2
)
)
)
** 2
)
+ df.x1
)
** 2
)
)
)
** 3
)
)
df["setup"] = np.nan
df["S_ig"] = np.nan
df["S_inc"] = np.nan
df["S_total"] = np.nan
return (
float_or_list(df["R2"].tolist()),
float_or_list(df["setup"].tolist()),
float_or_list(df["S_total"].tolist()),
float_or_list(df["S_inc"].tolist()),
float_or_list(df["S_ig"].tolist()),
)
def beu(Hs0, Tp, beta): def beu(Hs0, Tp, beta):

Loading…
Cancel
Save