Add additional function for Stockdon06

New function computes Stockdon06 in a vectorized fashion, so is much faster than previous implementation.
master
Chris Leaman 6 years ago
parent 7d8d85f1db
commit 5159239b66

@ -1,6 +1,7 @@
import numpy as np
import pandas as pd
def stockdon06(Hs0, Tp, beta):
def sto06_individual(Hs0, Tp, beta):
Lp = 9.8 * Tp ** 2 / 2 / np.pi
@ -19,5 +20,32 @@ def stockdon06(Hs0, Tp, beta):
return R2, setup, S_total, S_inc, S_ig
def sto06(df, Hs0_col, Tp_col, beta_col):
"""
Vectorized version of Stockdon06 which can be used with dataframes
:param df:
:param Hs0_col:
:param Tp_col:
:param beta_col:
:return:
"""
Lp = 9.8 * df[Tp_col] ** 2 / 2 / np.pi
# General equation
S_ig = pd.to_numeric(0.06 * np.sqrt(df[Hs0_col] * Lp), errors='coerce')
S_inc = pd.to_numeric(0.75 * df[beta_col] * np.sqrt(df[Hs0_col] * Lp), errors='coerce')
setup = pd.to_numeric(0.35 * df[beta_col] * np.sqrt(df[Hs0_col] * Lp), errors='coerce')
S_total = np.sqrt(S_inc ** 2 + S_ig ** 2)
R2 = 1.1 * (setup + S_total / 2)
# Dissipative conditions
dissipative = df[beta_col] / (df[Hs0_col] / Lp)**(0.5) <= 0.3
setup.loc[dissipative,:] = 0.016 * (df[Hs0_col] * Lp) ** (0.5) # eqn 16
S_total.loc[dissipative,:] = 0.046 * (df[Hs0_col] * Lp) ** (0.5) # eqn 17
R2.loc[dissipative,:] = 0.043 * (df[Hs0_col] * Lp) ** (0.5) # eqn 18
return R2, setup, S_total, S_inc, S_ig
if __name__ == '__main__':
pass

Loading…
Cancel
Save