@ -19,10 +19,12 @@ def shapes_from_shp(shp_file):
"""
"""
shapes = [ ]
shapes = [ ]
ids = [ ]
ids = [ ]
properties = [ ]
for feat in fiona . open ( shp_file , ' r ' ) :
for feat in fiona . open ( shp_file , ' r ' ) :
shapes . append ( shape ( feat [ ' geometry ' ] ) )
shapes . append ( shape ( feat [ ' geometry ' ] ) )
ids . append ( feat [ ' id ' ] )
ids . append ( feat [ ' id ' ] )
return shapes , ids
properties . append ( feat [ ' properties ' ] )
return shapes , ids , properties
def convert_coord_systems ( g1 , in_coord_system = ' EPSG:4326 ' , out_coord_system = ' EPSG:28356 ' ) :
def convert_coord_systems ( g1 , in_coord_system = ' EPSG:4326 ' , out_coord_system = ' EPSG:28356 ' ) :
@ -98,12 +100,12 @@ def get_slope(x, z, top_elevation, btm_elevation, method='end_points'):
return - slope
return - slope
def distance_to_intersection ( lat , lon , orientation, line_strings) :
def distance_to_intersection ( lat , lon , landward_ orientation, beach, line_strings, line_propertie s) :
"""
"""
Returns the distance at whjch a line drawn from a lat / lon at an orientation intersects a line stinrg
Returns the distance at whjch a line drawn from a lat / lon at an orientation intersects a line stinrg
: param lat :
: param lat :
: param lon :
: param lon :
: param orientation: Angle , clockwise positive from true north in degrees , of the tangent to the shoreline facing
: param landward_ orientation: Angle , anticlockwise positive from east in degrees , towards the land
towards the
towards the
land .
land .
: param line_string :
: param line_string :
@ -113,15 +115,26 @@ def distance_to_intersection(lat, lon, orientation, line_strings):
start_point = convert_coord_systems ( start_point )
start_point = convert_coord_systems ( start_point )
distance = 1000 # m look up to 1000m for an intersection
distance = 1000 # m look up to 1000m for an intersection
new_point = Point ( start_point . coords . xy [ 0 ] + distance * np . cos ( np . deg2rad ( orientation ) ) ,
landward_point = Point ( start_point . coords . xy [ 0 ] + distance * np . cos ( np . deg2rad ( landward_orientation ) ) ,
start_point . coords . xy [ 1 ] + distance * np . sin ( np . deg2rad ( orientation ) ) )
start_point . coords . xy [ 1 ] + distance * np . sin ( np . deg2rad ( landward_orientation ) ) )
profile_line = LineString ( [ start_point , new_point ] )
landward_line = LineString ( [ start_point , landward_point ] )
seaward_point = Point ( start_point . coords . xy [ 0 ] - distance * np . cos ( np . deg2rad ( landward_orientation ) ) ,
# Check whether profile_line intersects with any lines in line_string
start_point . coords . xy [ 1 ] - distance * np . sin ( np . deg2rad ( landward_orientation ) ) )
seaward_line = LineString ( [ start_point , seaward_point ] )
# Look at relevant line_strings which have the same beach property in order to reduce computation time
line_strings = [ s for s , p in zip ( line_strings , line_properties ) if p [ ' beach ' ] == beach ]
# Check whether profile_line intersects with any lines in line_string. If intersection point is landwards,
# consider this negative, otherwise seawards is positive.
for line_string in line_strings :
for line_string in line_strings :
intersection_points = profile_line . intersection ( line_string )
land_intersect_points = landward_line . intersection ( line_string )
if not intersection_points . is_empty :
if not land_intersect_points . is_empty :
return intersection_points . distance ( start_point )
return - land_intersect_points . distance ( start_point )
sea_intersect_points = seaward_line . intersection ( line_string )
if not sea_intersect_points . is_empty :
return sea_intersect_points . distance ( start_point )
# If no intersections are found, return nothing.
# If no intersections are found, return nothing.
return None
return None