|
|
@ -49,26 +49,49 @@ def forecast_twl(
|
|
|
|
df_twl["beta"] = pd.concat(results)
|
|
|
|
df_twl["beta"] = pd.concat(results)
|
|
|
|
|
|
|
|
|
|
|
|
elif slope == "mean":
|
|
|
|
elif slope == "mean":
|
|
|
|
logger.info("Calculating mean (dune toe to MHW) slopes")
|
|
|
|
df_slopes = get_mean_slope(df_profile_features, df_profiles, profile_type)
|
|
|
|
btm_z = 0.5 # m AHD
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# When calculating mean slope, we go from the dune toe to mhw. However, in some profiles, the dune toe is not
|
|
|
|
# Merge calculated slopes onto each twl timestep
|
|
|
|
# defined. In these cases, we should go to the dune crest. Let's make a temporary dataframe which has this
|
|
|
|
df_twl = df_twl.merge(df_slopes, left_index=True, right_index=True)
|
|
|
|
# already calculated.
|
|
|
|
|
|
|
|
df_top_ele = df_profile_features.xs(profile_type, level="profile_type").copy()
|
|
|
|
|
|
|
|
df_top_ele.loc[:, "top_ele"] = df_top_ele.dune_toe_z
|
|
|
|
|
|
|
|
df_top_ele.loc[
|
|
|
|
|
|
|
|
df_top_ele.top_ele.isnull().values, "top_ele"
|
|
|
|
|
|
|
|
] = df_top_ele.dune_crest_z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n_no_top_ele = len(df_top_ele[df_top_ele.top_ele.isnull()].index)
|
|
|
|
elif slope == "intertidal":
|
|
|
|
if n_no_top_ele != 0:
|
|
|
|
|
|
|
|
logger.warning(
|
|
|
|
logger.info("Calculating intertidal slopes")
|
|
|
|
"{} sites do not have dune toes/crests to calculate mean slope".format(
|
|
|
|
df_slopes = get_intertidal_slope(df_profiles, profile_type)
|
|
|
|
n_no_top_ele
|
|
|
|
|
|
|
|
|
|
|
|
# Merge calculated slopes onto each twl timestep
|
|
|
|
|
|
|
|
df_twl = df_twl.merge(df_slopes, left_index=True, right_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Estimate runup
|
|
|
|
|
|
|
|
R2, setup, S_total, S_inc, S_ig = runup_function(
|
|
|
|
|
|
|
|
Hs0=df_twl["Hs0"].tolist(),
|
|
|
|
|
|
|
|
Tp=df_twl["Tp"].tolist(),
|
|
|
|
|
|
|
|
beta=df_twl["beta"].tolist(),
|
|
|
|
|
|
|
|
r=df_twl.merge(df_grain_size, on="site_id").r.tolist(),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df_twl["R2"] = R2
|
|
|
|
|
|
|
|
df_twl["setup"] = setup
|
|
|
|
|
|
|
|
df_twl["S_total"] = S_total
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Estimate TWL
|
|
|
|
|
|
|
|
df_twl["R_high"] = df_twl["tide"] + df_twl["R2"]
|
|
|
|
|
|
|
|
df_twl["R_low"] = (
|
|
|
|
|
|
|
|
df_twl["tide"] + 1.1 * df_twl["setup"] - 1.1 / 2 * df_twl["S_total"]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return df_twl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_intertidal_slope(df_profiles, profile_type, top_z=1.15, btm_z=-0.9):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Gets intertidal slopes
|
|
|
|
|
|
|
|
:param df_profiles:
|
|
|
|
|
|
|
|
:param profile_type:
|
|
|
|
|
|
|
|
:return:
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate slopes for each profile
|
|
|
|
df_slopes = (
|
|
|
|
df_slopes = (
|
|
|
|
df_profiles.xs(profile_type, level="profile_type")
|
|
|
|
df_profiles.xs(profile_type, level="profile_type")
|
|
|
|
.dropna(subset=["z"])
|
|
|
|
.dropna(subset=["z"])
|
|
|
@ -77,25 +100,44 @@ def forecast_twl(
|
|
|
|
lambda x: slope_from_profile(
|
|
|
|
lambda x: slope_from_profile(
|
|
|
|
profile_x=x.index.get_level_values("x").tolist(),
|
|
|
|
profile_x=x.index.get_level_values("x").tolist(),
|
|
|
|
profile_z=x.z.tolist(),
|
|
|
|
profile_z=x.z.tolist(),
|
|
|
|
top_elevation=df_top_ele.loc[x.index[0][0], :].top_ele,
|
|
|
|
top_elevation=top_z,
|
|
|
|
btm_elevation=btm_z,
|
|
|
|
btm_elevation=max(min(x.z), btm_z),
|
|
|
|
method="least_squares",
|
|
|
|
method="least_squares",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
.rename("beta")
|
|
|
|
.rename("beta")
|
|
|
|
.to_frame()
|
|
|
|
.to_frame()
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
return df_slopes
|
|
|
|
|
|
|
|
|
|
|
|
# Merge calculated slopes onto each twl timestep
|
|
|
|
|
|
|
|
df_twl = df_twl.merge(df_slopes, left_index=True, right_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif slope == "intertidal":
|
|
|
|
def get_mean_slope(df_profile_features, df_profiles, profile_type, btm_z=0.5):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Calculates the mean slopes for all profiles
|
|
|
|
|
|
|
|
:param df_profile_features:
|
|
|
|
|
|
|
|
:param df_profiles:
|
|
|
|
|
|
|
|
:param profile_type:
|
|
|
|
|
|
|
|
:param btm_z: Typically mean high water
|
|
|
|
|
|
|
|
:return:
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("Calculating intertidal slopes")
|
|
|
|
logger.info("Calculating mean (dune toe to MHW) slopes")
|
|
|
|
top_z = 1.15 # m AHD = HAT from MHL annual ocean tides summary report
|
|
|
|
|
|
|
|
btm_z = -0.9 # m AHD = HAT from MHL annual ocean tides summary report
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate slopes for each profile
|
|
|
|
# When calculating mean slope, we go from the dune toe to mhw. However, in some profiles, the dune toe is not
|
|
|
|
|
|
|
|
# defined. In these cases, we should go to the dune crest. Let's make a temporary dataframe which has this
|
|
|
|
|
|
|
|
# already calculated.
|
|
|
|
|
|
|
|
df_top_ele = df_profile_features.xs(profile_type, level="profile_type").copy()
|
|
|
|
|
|
|
|
df_top_ele.loc[:, "top_ele"] = df_top_ele.dune_toe_z
|
|
|
|
|
|
|
|
df_top_ele.loc[
|
|
|
|
|
|
|
|
df_top_ele.top_ele.isnull().values, "top_ele"
|
|
|
|
|
|
|
|
] = df_top_ele.dune_crest_z
|
|
|
|
|
|
|
|
n_no_top_ele = len(df_top_ele[df_top_ele.top_ele.isnull()].index)
|
|
|
|
|
|
|
|
if n_no_top_ele != 0:
|
|
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
|
|
"{} sites do not have dune toes/crests to calculate mean slope".format(
|
|
|
|
|
|
|
|
n_no_top_ele
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
)
|
|
|
|
df_slopes = (
|
|
|
|
df_slopes = (
|
|
|
|
df_profiles.xs(profile_type, level="profile_type")
|
|
|
|
df_profiles.xs(profile_type, level="profile_type")
|
|
|
|
.dropna(subset=["z"])
|
|
|
|
.dropna(subset=["z"])
|
|
|
@ -104,40 +146,15 @@ def forecast_twl(
|
|
|
|
lambda x: slope_from_profile(
|
|
|
|
lambda x: slope_from_profile(
|
|
|
|
profile_x=x.index.get_level_values("x").tolist(),
|
|
|
|
profile_x=x.index.get_level_values("x").tolist(),
|
|
|
|
profile_z=x.z.tolist(),
|
|
|
|
profile_z=x.z.tolist(),
|
|
|
|
top_elevation=top_z,
|
|
|
|
top_elevation=df_top_ele.loc[x.index[0][0], :].top_ele,
|
|
|
|
btm_elevation=max(min(x.z), btm_z),
|
|
|
|
btm_elevation=btm_z,
|
|
|
|
method="least_squares",
|
|
|
|
method="least_squares",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
.rename("beta")
|
|
|
|
.rename("beta")
|
|
|
|
.to_frame()
|
|
|
|
.to_frame()
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
return df_slopes
|
|
|
|
# Merge calculated slopes onto each twl timestep
|
|
|
|
|
|
|
|
df_twl = df_twl.merge(df_slopes, left_index=True, right_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Estimate runup
|
|
|
|
|
|
|
|
R2, setup, S_total, S_inc, S_ig = runup_function(
|
|
|
|
|
|
|
|
Hs0=df_twl["Hs0"].tolist(),
|
|
|
|
|
|
|
|
Tp=df_twl["Tp"].tolist(),
|
|
|
|
|
|
|
|
beta=df_twl["beta"].tolist(),
|
|
|
|
|
|
|
|
r=df_twl.merge(df_grain_size, on="site_id").r.tolist(),
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df_twl["R2"] = R2
|
|
|
|
|
|
|
|
df_twl["setup"] = setup
|
|
|
|
|
|
|
|
df_twl["S_total"] = S_total
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Estimate TWL
|
|
|
|
|
|
|
|
df_twl["R_high"] = df_twl["tide"] + df_twl["R2"]
|
|
|
|
|
|
|
|
df_twl["R_low"] = (
|
|
|
|
|
|
|
|
df_twl["tide"] + 1.1 * df_twl["setup"] - 1.1 / 2 * df_twl["S_total"]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Drop unneeded columns
|
|
|
|
|
|
|
|
# df_twl.drop(columns=["E", "Exs", "P", "Pxs", "dir"], inplace=True, errors="ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return df_twl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mean_slope_for_site_id(
|
|
|
|
def mean_slope_for_site_id(
|
|
|
|