Add module for parsing observed storm impacts

master^2
Chris Leaman 6 years ago
parent e7d6aa8761
commit 1b521a0524

@ -0,0 +1,138 @@
import logging.config
import os
import numpy as np
import pandas as pd
from scipy.integrate import simps
logging.config.fileConfig('./src/logging.conf', disable_existing_loggers=False)
logger = logging.getLogger(__name__)
def return_first_or_nan(l):
"""
Returns the first value of a list if empty or returns nan. Used for getting dune/toe and crest values.
:param l:
:return:
"""
if len(l) == 0:
return np.nan
else:
return l[0]
def volume_change(df_profiles, df_profile_features, zone):
logger.info('Calculating change in beach volume in {} zone'.format(zone))
df_vol_changes = pd.DataFrame(index=df_profile_features.index)
df_profiles = df_profiles.sort_index()
sites = df_profiles.groupby(level=['site_id'])
for site_id, df_site in sites:
logger.debug('Calculating change in beach volume at {} in {} zone'.format(site_id, zone))
prestorm_dune_toe_x = df_profile_features.loc[df_profile_features.index == site_id].dune_toe_x.tolist()
prestorm_dune_crest_x = df_profile_features.loc[df_profile_features.index == site_id].dune_crest_x.tolist()
# We may not have a dune toe or crest defined, or there may be multiple defined.
prestorm_dune_crest_x = return_first_or_nan(prestorm_dune_crest_x)
prestorm_dune_toe_x = return_first_or_nan(prestorm_dune_toe_x)
# If no dune to has been defined, Dlow = Dhigh. Refer to Sallenger (2000).
if np.isnan(prestorm_dune_toe_x):
prestorm_dune_toe_x = prestorm_dune_crest_x
# Find last x coordinate where we have both prestorm and poststorm measurements. If we don't do this,
# the prestorm and poststorm values are going to be calculated over different lengths.
df_zone = df_site.dropna(subset=['z'])
x_last_obs = min([max(df_zone.query("profile_type == '{}'".format(profile_type)).index.get_level_values('x'))
for profile_type in ['prestorm', 'poststorm']])
# Where we want to measure pre and post storm volume is dependant on the zone selected
if zone == 'swash':
x_min = prestorm_dune_toe_x
x_max = x_last_obs
elif zone == 'dune_face':
x_min = prestorm_dune_crest_x
x_max = prestorm_dune_toe_x
else:
logger.warning('Zone argument not properly specified. Please check')
x_min = None
x_max = None
# Now, compute the volume of sand between the x-coordinates prestorm_dune_toe_x and x_swash_last for both prestorm
# and post storm profiles.
prestorm_vol = beach_volume(x=df_zone.query("profile_type=='prestorm'").index.get_level_values('x'),
z=df_zone.query("profile_type=='prestorm'").z,
x_min=x_min,
x_max=x_max)
poststorm_vol = beach_volume(x=df_zone.query("profile_type=='poststorm'").index.get_level_values('x'),
z=df_zone.query("profile_type=='poststorm'").z,
x_min=x_min,
x_max=x_max)
df_vol_changes.loc[site_id, 'prestorm_{}_vol'.format(zone)] = prestorm_vol
df_vol_changes.loc[site_id, 'poststorm_{}_vol'.format(zone)] = poststorm_vol
df_vol_changes.loc[site_id, '{}_vol_change'.format(zone)] = prestorm_vol - poststorm_vol
return df_vol_changes
def beach_volume(x, z, x_min=np.NINF, x_max=np.inf):
"""
Returns the beach volume of a profile, calculated with Simpsons rule
:param x: x-coordinates of beach profile
:param z: z-coordinates of beach profile
:param x_min: Minimum x-coordinate to consider when calculating volume
:param x_max: Maximum x-coordinate to consider when calculating volume
:return:
"""
profile_mask = [True if x_min < x_coord < x_max else False for x_coord in x]
x_masked = np.array(x)[profile_mask]
z_masked = np.array(z)[profile_mask]
if len(x_masked) == 0 or len(z_masked) == 0:
return np.nan
else:
return simps(z_masked, x_masked)
def impacts_from_profiles(df_profiles, df_profile_features):
# Impacts should be per site, so use the profile_features as the base index.
df_observed_impacts = pd.DataFrame(index=df_profile_features.index)
# Swash zone volume change
prestorm_swash_vol, poststorm_swash_vol = volume_change(df_profiles, df_profile_features, zone='swash')
# Dune volume change
# If no dune volume change, then swash zone
#
pass
def storm_regime(df_observed_impacts):
logger.info('Getting observed storm regimes')
df_observed_impacts.loc[df_observed_impacts.swash_vol_change < 3,'storm_regime'] = 'swash'
df_observed_impacts.loc[df_observed_impacts.dune_face_vol_change > 3, 'storm_regime'] = 'collision'
return df_observed_impacts
if __name__ == '__main__':
logger.info('Importing existing data')
data_folder = './data/interim'
df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0, 1, 2])
df_profile_features = pd.read_csv(os.path.join(data_folder, 'profile_features.csv'), index_col=[0])
logger.info('Creating new dataframe for observed impacts')
df_observed_impacts = pd.DataFrame(index=df_profile_features.index)
logger.info('Getting pre/post storm volumes')
df_swash_vol_changes = volume_change(df_profiles, df_profile_features, zone='swash')
df_dune_face_vol_changes = volume_change(df_profiles, df_profile_features, zone='dune_face')
df_observed_impacts = df_observed_impacts.join([df_swash_vol_changes, df_dune_face_vol_changes ])
# TODO Classify regime based on volume changes
df_observed_impacts = storm_regime(df_observed_impacts)
# TODO Save dataframe to csv
df_observed_impacts.to_csv(os.path.join(data_folder, 'impacts_observed.csv'))
Loading…
Cancel
Save