You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
geetools_VH/read_images.py

589 lines
22 KiB
Python

#==========================================================#
#==========================================================#
# Extract shorelines from Landsat images
#==========================================================#
#==========================================================#
#==========================================================#
# Initial settings
#==========================================================#
import os
import numpy as np
import matplotlib.pyplot as plt
import ee
import pdb
# other modules
from osgeo import gdal, ogr, osr
import pickle
import matplotlib.cm as cm
from pylab import ginput
from shapely.geometry import LineString
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
import skimage.morphology as morphology
# machine learning modules
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler, Normalizer
from sklearn.externals import joblib
# import own modules
import functions.utils as utils
import functions.sds as sds
# some other settings
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
plt.rcParams['axes.grid'] = True
plt.rcParams['figure.max_open_warning'] = 100
ee.Initialize()
#==========================================================#
# Parameters
#==========================================================#
sitename = 'NARRA'
cloud_thresh = 0.7 # threshold for cloud cover
plot_bool = False # if you want the plots
output_epsg = 28356 # GDA94 / MGA Zone 56
buffer_size = 7 # radius (in pixels) of disk for buffer (pixel classification)
min_beach_size = 20 # number of pixels in a beach (pixel classification)
dist_ref = 100 # maximum distance from reference point
min_length_wl = 200 # minimum length of shoreline LineString to be kept
manual_bool = True # to manually check images
output = dict([])
#==========================================================#
# Metadata
#==========================================================#
filepath = os.path.join(os.getcwd(), 'data', sitename)
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'rb') as f:
metadata = pickle.load(f)
#%%
#==========================================================#
# Read S2 images
#==========================================================#
satname = 'S2'
dates = metadata[satname]['dates']
input_epsg = 32756 # metadata[satname]['epsg']
# path to images
filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m')
filenames10 = os.listdir(filepath10)
filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m')
filenames20 = os.listdir(filepath20)
filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m')
filenames60 = os.listdir(filepath60)
if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)):
raise 'error: not the same amount of files for 10, 20 and 60 m'
N = len(filenames10)
# initialise variables
cloud_cover_ts = []
acc_georef_ts = []
date_acquired_ts = []
filename_ts = []
satname_ts = []
timestamp = []
shorelines = []
idx_skipped = []
spacing = '=========================================================='
msg = ' %s\n %s\n %s' % (spacing, satname, spacing)
print(msg)
for i in range(N):
# read 10m bands
fn = os.path.join(filepath10, filenames10[i])
data = gdal.Open(fn, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im10 = np.stack(bands, 2)
im10 = im10/10000 # TOA scaled to 10000
# if image is only zeros, skip it
if sum(sum(sum(im10))) < 1:
print('skip ' + str(i) + ' - no data')
idx_skipped.append(i)
continue
nrows = im10.shape[0]
ncols = im10.shape[1]
# read 20m band (SWIR1)
fn = os.path.join(filepath20, filenames20[i])
data = gdal.Open(fn, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im20 = np.stack(bands, 2)
im20 = im20[:,:,0]
im20 = im20/10000 # TOA scaled to 10000
im_swir = transform.resize(im20, (nrows, ncols), order=1, preserve_range=True, mode='constant')
im_swir = np.expand_dims(im_swir, axis=2)
# append down-sampled swir band to the 10m bands
im_ms = np.append(im10, im_swir, axis=2)
# read 60m band (QA)
fn = os.path.join(filepath60, filenames60[i])
data = gdal.Open(fn, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im60 = np.stack(bands, 2)
im_qa = im60[:,:,0]
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
cloud_mask = transform.resize(cloud_mask,(nrows, ncols), order=0, preserve_range=True, mode='constant')
# check if -inf or nan values on any band and add to cloud mask
for k in range(im_ms.shape[2]):
im_inf = np.isin(im_ms[:,:,k], -np.inf)
im_nan = np.isnan(im_ms[:,:,k])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover and if above threshold, skip it
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
if cloud_cover > cloud_thresh:
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
idx_skipped.append(i)
continue
# rescale image intensity for display purposes
im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False)
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = sds.classify_image_NN_nopan(im_ms, cloud_mask, min_beach_size, plot_bool)
# if there aren't any sandy pixels
if sum(sum(im_labels[:,:,0])) == 0 :
# use global threshold
im_ndwi = sds.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask, plot_bool)
contours = sds.find_wl_contours(im_ndwi, cloud_mask, plot_bool)
else:
# use specific threhsold
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, plot_bool)
# convert from pixels to world coordinates
wl_coords = sds.convert_pix2world(contours_mwi, georef)
# convert to output epsg spatial reference
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
# remove contour lines that have a perimeter < min_length_wl
wl_good = []
for l, wls in enumerate(wl):
coords = [(wls[k,0], wls[k,1]) for k in range(len(wls))]
a = LineString(coords) # shapely LineString structure
if a.length >= min_length_wl:
wl_good.append(wls)
# format points and only select the ones close to the refpoints
x_points = np.array([])
y_points = np.array([])
for k in range(len(wl_good)):
x_points = np.append(x_points,wl_good[k][:,0])
y_points = np.append(y_points,wl_good[k][:,1])
wl_good = np.transpose(np.array([x_points,y_points]))
temp = np.zeros((len(wl_good))).astype(bool)
for k in range(len(refpoints)):
temp = np.logical_or(np.linalg.norm(wl_good - refpoints[k,[0,1]], axis=1) < dist_ref, temp)
wl_final = wl_good[temp]
# plot output
plt.figure()
im = np.copy(im_display)
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
plt.imshow(im)
for k,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color='k', linestyle='--')
plt.title(satname + ' ' + metadata[satname]['dates'][i].strftime('%Y-%m-%d') + ' acc : ' + str(metadata[satname]['acc_georef'][i]) + ' m' )
plt.draw()
pt_in = np.array(ginput(n=1, timeout=1000))
plt.close()
# if image is rejected, skip it
if pt_in[0][1] > nrows/2:
print('skip ' + str(i) + ' - rejected')
idx_skipped.append(i)
continue
# if accepted, store the data
cloud_cover_ts.append(cloud_cover)
acc_georef_ts.append(metadata[satname]['acc_georef'][i])
filename_ts.append(filenames10[i])
satname_ts.append(satname)
date_acquired_ts.append(filenames10[i][:10])
timestamp.append(metadata[satname]['dates'][i])
shorelines.append(wl_final)
# store in output structure
output[satname] = {'dates':timestamp, 'shorelines':shorelines, 'idx_skipped':idx_skipped,
'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts,
'acc_georef':acc_georef_ts}}
del idx_skipped
#%%
#==========================================================#
# Read L7&L8 images
#==========================================================#
satname = 'L8'
dates = metadata[satname]['dates']
input_epsg = 32656 # metadata[satname]['epsg']
# path to images
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L7&L8', 'pan')
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L7&L8', 'ms')
filenames_pan = os.listdir(filepath_pan)
filenames_ms = os.listdir(filepath_ms)
if (not len(filenames_pan) == len(filenames_ms)):
raise 'error: not the same amount of files for pan and ms'
N = len(filenames_pan)
# initialise variables
cloud_cover_ts = []
acc_georef_ts = []
date_acquired_ts = []
filename_ts = []
satname_ts = []
timestamp = []
shorelines = []
idx_skipped = []
spacing = '=========================================================='
msg = ' %s\n %s\n %s' % (spacing, satname, spacing)
print(msg)
for i in range(N):
# get satellite name
sat = filenames_pan[i][20:22]
# read pan image
fn_pan = os.path.join(filepath_pan, filenames_pan[i])
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_pan = np.stack(bands, 2)[:,:,0]
nrows = im_pan.shape[0]
ncols = im_pan.shape[1]
# read ms image
fn_ms = os.path.join(filepath_ms, filenames_ms[i])
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# cloud mask
im_qa = im_ms[:,:,5]
cloud_mask = sds.create_cloud_mask(im_qa, sat, plot_bool)
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True, mode='constant').astype('bool_')
# resize the image using bilinear interpolation (order 1)
im_ms = im_ms[:,:,:5]
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True, mode='constant')
# check if -inf or nan values on any band and add to cloud mask
for k in range(im_ms.shape[2]+1):
if k == 5:
im_inf = np.isin(im_pan, -np.inf)
im_nan = np.isnan(im_pan)
else:
im_inf = np.isin(im_ms[:,:,k], -np.inf)
im_nan = np.isnan(im_ms[:,:,k])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover and skip image if above threshold
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
if cloud_cover > cloud_thresh:
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
idx_skipped.append(i)
continue
# Pansharpen image (different for L8 and L7)
if sat == 'L7':
# pansharpen (Green, Red, NIR) and downsample Blue and SWIR1
im_ms_ps = sds.pansharpen(im_ms[:,:,[1,2,3]], im_pan, cloud_mask, plot_bool)
im_ms_ps = np.append(im_ms[:,:,[0]], im_ms_ps, axis=2)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[4]], axis=2)
im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False)
elif sat == 'L8':
# pansharpen RGB image and downsample NIR and SWIR1
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
im_display = sds.rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool)
# if there aren't any sandy pixels
if sum(sum(im_labels[:,:,0])) == 0 :
# use global threshold
im_ndwi = sds.nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, plot_bool)
contours = sds.find_wl_contours(im_ndwi, cloud_mask, plot_bool)
else:
# use specific threhsold
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size, plot_bool)
# convert from pixels to world coordinates
wl_coords = sds.convert_pix2world(contours_mwi, georef)
# convert to output epsg spatial reference
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
# remove contour lines that have a perimeter < min_length_wl
wl_good = []
for l, wls in enumerate(wl):
coords = [(wls[k,0], wls[k,1]) for k in range(len(wls))]
a = LineString(coords) # shapely LineString structure
if a.length >= min_length_wl:
wl_good.append(wls)
# format points and only select the ones close to the refpoints
x_points = np.array([])
y_points = np.array([])
for k in range(len(wl_good)):
x_points = np.append(x_points,wl_good[k][:,0])
y_points = np.append(y_points,wl_good[k][:,1])
wl_good = np.transpose(np.array([x_points,y_points]))
temp = np.zeros((len(wl_good))).astype(bool)
for k in range(len(refpoints)):
temp = np.logical_or(np.linalg.norm(wl_good - refpoints[k,[0,1]], axis=1) < dist_ref, temp)
wl_final = wl_good[temp]
# plot output
plt.figure()
plt.subplot(121)
im = np.copy(im_display)
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
plt.imshow(im)
for k,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color='k', linestyle='--')
plt.title(sat + ' ' + metadata[satname]['dates'][i].strftime('%Y-%m-%d') + ' acc : ' + str(metadata[satname]['acc_georef'][i]) + ' m' )
pt_in = np.array(ginput(n=1, timeout=1000))
plt.close()
# if image is rejected, skip it
if pt_in[0][1] > nrows/2:
print('skip ' + str(i) + ' - rejected')
idx_skipped.append(i)
continue
# if accepted, store the data
cloud_cover_ts.append(cloud_cover)
acc_georef_ts.append(metadata[satname]['acc_georef'][i])
filename_ts.append(filenames_pan[i])
satname_ts.append(sat)
date_acquired_ts.append(filenames_pan[i][:10])
timestamp.append(metadata[satname]['dates'][i])
shorelines.append(wl_final)
# store in output structure
output[satname] = {'dates':timestamp, 'shorelines':shorelines, 'idx_skipped':idx_skipped,
'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts,
'acc_georef':acc_georef_ts}}
del idx_skipped
#%%
#==========================================================#
# Read L5 images
#==========================================================#
satname = 'L5'
dates = metadata[satname]['dates']
input_epsg = 32656 # metadata[satname]['epsg']
# path to images
filepath_img = os.path.join(os.getcwd(), 'data', sitename, satname, '30m')
filenames = os.listdir(filepath_img)
N = len(filenames)
# initialise variables
cloud_cover_ts = []
acc_georef_ts = []
date_acquired_ts = []
filename_ts = []
satname_ts = []
timestamp = []
shorelines = []
idx_skipped = []
spacing = '=========================================================='
msg = ' %s\n %s\n %s' % (spacing, satname, spacing)
print(msg)
for i in range(N):
# read ms image
fn = os.path.join(filepath_img, filenames[i])
data = gdal.Open(fn, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# down-sample to half hte original pixel size
nrows = im_ms.shape[0]*2
ncols = im_ms.shape[1]*2
# cloud mask
im_qa = im_ms[:,:,5]
im_ms = im_ms[:,:,:-1]
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True, mode='constant').astype('bool_')
# resize the image using bilinear interpolation (order 1)
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True, mode='constant')
# adjust georef vector (scale becomes 15m and origin is adjusted to the center of new corner pixel)
georef[1] = 15
georef[5] = -15
georef[0] = georef[0] + 7.5
georef[3] = georef[3] - 7.5
# check if -inf or nan values on any band and add to cloud mask
for k in range(im_ms.shape[2]):
im_inf = np.isin(im_ms[:,:,k], -np.inf)
im_nan = np.isnan(im_ms[:,:,k])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover and skip image if above threshold
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
if cloud_cover > cloud_thresh:
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
idx_skipped.append(i)
continue
# rescale image intensity for display purposes
im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False)
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = sds.classify_image_NN_nopan(im_ms, cloud_mask, min_beach_size, plot_bool)
# if there aren't any sandy pixels
if sum(sum(im_labels[:,:,0])) == 0 :
# use global threshold
im_ndwi = sds.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask, plot_bool)
contours = sds.find_wl_contours(im_ndwi, cloud_mask, plot_bool)
else:
# use specific threhsold
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, plot_bool)
# convert from pixels to world coordinates
wl_coords = sds.convert_pix2world(contours_mwi, georef)
# convert to output epsg spatial reference
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
# remove contour lines that have a perimeter < min_length_wl
wl_good = []
for l, wls in enumerate(wl):
coords = [(wls[k,0], wls[k,1]) for k in range(len(wls))]
a = LineString(coords) # shapely LineString structure
if a.length >= min_length_wl:
wl_good.append(wls)
# format points and only select the ones close to the refpoints
x_points = np.array([])
y_points = np.array([])
for k in range(len(wl_good)):
x_points = np.append(x_points,wl_good[k][:,0])
y_points = np.append(y_points,wl_good[k][:,1])
wl_good = np.transpose(np.array([x_points,y_points]))
temp = np.zeros((len(wl_good))).astype(bool)
for k in range(len(refpoints)):
temp = np.logical_or(np.linalg.norm(wl_good - refpoints[k,[0,1]], axis=1) < dist_ref, temp)
wl_final = wl_good[temp]
# plot output
plt.figure()
plt.subplot(121)
im = np.copy(im_display)
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
plt.imshow(im)
for k,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color='k', linestyle='--')
plt.title(satname + ' ' + metadata[satname]['dates'][i].strftime('%Y-%m-%d') + ' acc : ' + str(metadata[satname]['acc_georef'][i]) + ' m' )
plt.subplot(122)
plt.axis('equal')
plt.axis('off')
plt.plot(refpoints[:,0], refpoints[:,1], 'k.')
plt.plot(wl_final[:,0], wl_final[:,1], 'r.')
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
plt.tight_layout()
plt.draw()
pt_in = np.array(ginput(n=1, timeout=1000))
plt.close()
# if image is rejected, skip it
if pt_in[0][1] > nrows/2:
print('skip ' + str(i) + ' - rejected')
idx_skipped.append(i)
continue
# if accepted, store the data
cloud_cover_ts.append(cloud_cover)
acc_georef_ts.append(metadata[satname]['acc_georef'][i])
filename_ts.append(filenames[i])
satname_ts.append(satname)
date_acquired_ts.append(filenames[i][:10])
timestamp.append(metadata[satname]['dates'][i])
shorelines.append(wl_final)
# store in output structure
output[satname] = {'dates':timestamp, 'shorelines':shorelines, 'idx_skipped':idx_skipped,
'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts,
'acc_georef':acc_georef_ts}}
del idx_skipped
#==========================================================#
#==========================================================#
#==========================================================#
#==========================================================#
#%%
# save output
with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'wb') as f:
pickle.dump(output, f)
# save idx_skipped
#idx_skipped = dict([])
#for satname in list(output.keys()):
# idx_skipped[satname] = output[satname]['idx_skipped']
#with open(os.path.join(filepath, sitename + '_idxskipped' + '.pkl'), 'wb') as f:
# pickle.dump(idx_skipped, f)