forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
12 KiB
Python
372 lines
12 KiB
Python
"""This module contains utilities to work with satellite images'
|
|
|
|
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
|
|
"""
|
|
|
|
# load modules
|
|
import os
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pdb
|
|
|
|
# other modules
|
|
from osgeo import gdal, ogr, osr
|
|
import skimage.transform as transform
|
|
import simplekml
|
|
from scipy.ndimage.filters import uniform_filter
|
|
|
|
def convert_pix2world(points, georef):
|
|
"""
|
|
Converts pixel coordinates (row,columns) to world projected coordinates
|
|
performing an affine transformation.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
points: np.array or list of np.array
|
|
array with 2 columns (rows first and columns second)
|
|
georef: np.array
|
|
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
|
|
|
|
Returns: -----------
|
|
points_converted: np.array or list of np.array
|
|
converted coordinates, first columns with X and second column with Y
|
|
|
|
"""
|
|
|
|
# make affine transformation matrix
|
|
aff_mat = np.array([[georef[1], georef[2], georef[0]],
|
|
[georef[4], georef[5], georef[3]],
|
|
[0, 0, 1]])
|
|
# create affine transformation
|
|
tform = transform.AffineTransform(aff_mat)
|
|
|
|
if type(points) is list:
|
|
points_converted = []
|
|
# iterate over the list
|
|
for i, arr in enumerate(points):
|
|
tmp = arr[:,[1,0]]
|
|
points_converted.append(tform(tmp))
|
|
|
|
elif type(points) is np.ndarray:
|
|
tmp = points[:,[1,0]]
|
|
points_converted = tform(tmp)
|
|
|
|
else:
|
|
print('invalid input type')
|
|
raise
|
|
|
|
return points_converted
|
|
|
|
def convert_world2pix(points, georef):
|
|
"""
|
|
Converts world projected coordinates (X,Y) to image coordinates (row,column)
|
|
performing an affine transformation.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
points: np.array or list of np.array
|
|
array with 2 columns (rows first and columns second)
|
|
georef: np.array
|
|
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
|
|
|
|
Returns: -----------
|
|
points_converted: np.array or list of np.array
|
|
converted coordinates, first columns with row and second column with column
|
|
|
|
"""
|
|
|
|
# make affine transformation matrix
|
|
aff_mat = np.array([[georef[1], georef[2], georef[0]],
|
|
[georef[4], georef[5], georef[3]],
|
|
[0, 0, 1]])
|
|
# create affine transformation
|
|
tform = transform.AffineTransform(aff_mat)
|
|
|
|
if type(points) is list:
|
|
points_converted = []
|
|
# iterate over the list
|
|
for i, arr in enumerate(points):
|
|
points_converted.append(tform.inverse(points))
|
|
|
|
elif type(points) is np.ndarray:
|
|
points_converted = tform.inverse(points)
|
|
|
|
else:
|
|
print('invalid input type')
|
|
raise
|
|
|
|
return points_converted
|
|
|
|
|
|
def convert_epsg(points, epsg_in, epsg_out):
|
|
"""
|
|
Converts from one spatial reference to another using the epsg codes.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
points: np.array or list of np.ndarray
|
|
array with 2 columns (rows first and columns second)
|
|
epsg_in: int
|
|
epsg code of the spatial reference in which the input is
|
|
epsg_out: int
|
|
epsg code of the spatial reference in which the output will be
|
|
|
|
Returns: -----------
|
|
points_converted: np.array or list of np.array
|
|
converted coordinates
|
|
|
|
"""
|
|
|
|
# define input and output spatial references
|
|
inSpatialRef = osr.SpatialReference()
|
|
inSpatialRef.ImportFromEPSG(epsg_in)
|
|
outSpatialRef = osr.SpatialReference()
|
|
outSpatialRef.ImportFromEPSG(epsg_out)
|
|
# create a coordinates transform
|
|
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
|
|
# transform points
|
|
if type(points) is list:
|
|
points_converted = []
|
|
# iterate over the list
|
|
for i, arr in enumerate(points):
|
|
points_converted.append(np.array(coordTransform.TransformPoints(arr)))
|
|
elif type(points) is np.ndarray:
|
|
points_converted = np.array(coordTransform.TransformPoints(points))
|
|
else:
|
|
print('invalid input type')
|
|
raise
|
|
|
|
return points_converted
|
|
|
|
def coords_from_kml(fn):
|
|
"""
|
|
Extracts coordinates from a .kml file.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
fn: str
|
|
filepath + filename of the kml file to be read
|
|
|
|
Returns: -----------
|
|
polygon: list
|
|
coordinates extracted from the .kml file
|
|
|
|
"""
|
|
|
|
# read .kml file
|
|
with open(fn) as kmlFile:
|
|
doc = kmlFile.read()
|
|
# parse to find coordinates field
|
|
str1 = '<coordinates>'
|
|
str2 = '</coordinates>'
|
|
subdoc = doc[doc.find(str1)+len(str1):doc.find(str2)]
|
|
coordlist = subdoc.split('\n')
|
|
# read coordinates
|
|
polygon = []
|
|
for i in range(1,len(coordlist)-1):
|
|
polygon.append([float(coordlist[i].split(',')[0]), float(coordlist[i].split(',')[1])])
|
|
|
|
return [polygon]
|
|
|
|
def save_kml(coords, epsg):
|
|
"""
|
|
Saves coordinates with specified spatial reference system into a .kml file in WGS84.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
coords: np.array
|
|
coordinates (2 columns) to be converted into a .kml file
|
|
|
|
Returns:
|
|
-----------
|
|
Saves 'coords.kml' in the current folder.
|
|
|
|
"""
|
|
|
|
kml = simplekml.Kml()
|
|
coords_wgs84 = convert_epsg(coords, epsg, 4326)
|
|
kml.newlinestring(name='coords', coords=coords_wgs84)
|
|
kml.save('coords.kml')
|
|
|
|
def get_filepath(inputs,satname):
|
|
"""
|
|
Create filepath to the different folders containing the satellite images.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
inputs: dict
|
|
dictionnary that contains the following fields:
|
|
'sitename': str
|
|
String containig the name of the site
|
|
'polygon': list
|
|
polygon containing the lon/lat coordinates to be extracted
|
|
longitudes in the first column and latitudes in the second column
|
|
'dates': list of str
|
|
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd'
|
|
e.g. ['1987-01-01', '2018-01-01']
|
|
'sat_list': list of str
|
|
list that contains the names of the satellite missions to include
|
|
e.g. ['L5', 'L7', 'L8', 'S2']
|
|
satname: str
|
|
short name of the satellite mission
|
|
|
|
Returns:
|
|
-----------
|
|
filepath: str or list of str
|
|
contains the filepath(s) to the folder(s) containing the satellite images
|
|
|
|
"""
|
|
|
|
sitename = inputs['sitename']
|
|
# access the images
|
|
if satname == 'L5':
|
|
# access downloaded Landsat 5 images
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename, satname, '30m')
|
|
elif satname == 'L7':
|
|
# access downloaded Landsat 7 images
|
|
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L7', 'pan')
|
|
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L7', 'ms')
|
|
filenames_pan = os.listdir(filepath_pan)
|
|
filenames_ms = os.listdir(filepath_ms)
|
|
if (not len(filenames_pan) == len(filenames_ms)):
|
|
raise 'error: not the same amount of files for pan and ms'
|
|
filepath = [filepath_pan, filepath_ms]
|
|
elif satname == 'L8':
|
|
# access downloaded Landsat 8 images
|
|
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L8', 'pan')
|
|
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L8', 'ms')
|
|
filenames_pan = os.listdir(filepath_pan)
|
|
filenames_ms = os.listdir(filepath_ms)
|
|
if (not len(filenames_pan) == len(filenames_ms)):
|
|
raise 'error: not the same amount of files for pan and ms'
|
|
filepath = [filepath_pan, filepath_ms]
|
|
elif satname == 'S2':
|
|
# access downloaded Sentinel 2 images
|
|
filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m')
|
|
filenames10 = os.listdir(filepath10)
|
|
filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m')
|
|
filenames20 = os.listdir(filepath20)
|
|
filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m')
|
|
filenames60 = os.listdir(filepath60)
|
|
if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)):
|
|
raise 'error: not the same amount of files for 10, 20 and 60 m bands'
|
|
filepath = [filepath10, filepath20, filepath60]
|
|
|
|
return filepath
|
|
|
|
def get_filenames(filename, filepath, satname):
|
|
"""
|
|
Creates filepath + filename for all the bands belonging to the same image.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
filename: str
|
|
name of the downloaded satellite image as found in the metadata
|
|
filepath: str or list of str
|
|
contains the filepath(s) to the folder(s) containing the satellite images
|
|
satname: str
|
|
short name of the satellite mission
|
|
|
|
Returns:
|
|
-----------
|
|
fn: str or list of str
|
|
contains the filepath + filenames to access the satellite image
|
|
|
|
"""
|
|
|
|
if satname == 'L5':
|
|
fn = os.path.join(filepath, filename)
|
|
if satname == 'L7' or satname == 'L8':
|
|
filename_ms = filename.replace('pan','ms')
|
|
fn = [os.path.join(filepath[0], filename),
|
|
os.path.join(filepath[1], filename_ms)]
|
|
if satname == 'S2':
|
|
filename20 = filename.replace('10m','20m')
|
|
filename60 = filename.replace('10m','60m')
|
|
fn = [os.path.join(filepath[0], filename),
|
|
os.path.join(filepath[1], filename20),
|
|
os.path.join(filepath[2], filename60)]
|
|
|
|
return fn
|
|
|
|
def image_std(image, radius):
|
|
"""
|
|
Calculates the standard deviation of an image, using a moving window of specified radius.
|
|
|
|
Arguments:
|
|
-----------
|
|
image: np.array
|
|
2D array containing the pixel intensities of a single-band image
|
|
radius: int
|
|
radius defining the moving window used to calculate the standard deviation. For example,
|
|
radius = 1 will produce a 3x3 moving window.
|
|
|
|
Returns:
|
|
-----------
|
|
win_std: np.array
|
|
2D array containing the standard deviation of the image
|
|
|
|
"""
|
|
|
|
# convert to float
|
|
image = image.astype(float)
|
|
# first pad the image
|
|
image_padded = np.pad(image, radius, 'reflect')
|
|
# window size
|
|
win_rows, win_cols = radius*2 + 1, radius*2 + 1
|
|
# calculate std
|
|
win_mean = uniform_filter(image_padded, (win_rows, win_cols))
|
|
win_sqr_mean = uniform_filter(image_padded**2, (win_rows, win_cols))
|
|
win_var = win_sqr_mean - win_mean**2
|
|
win_std = np.sqrt(win_var)
|
|
# remove padding
|
|
win_std = win_std[radius:-radius, radius:-radius]
|
|
|
|
return win_std
|
|
|
|
def mask_raster(fn, mask):
|
|
"""
|
|
Masks a .tif raster using GDAL.
|
|
|
|
Arguments:
|
|
-----------
|
|
fn: str
|
|
filepath + filename of the .tif raster
|
|
mask: np.array
|
|
array of boolean where True indicates the pixels that are to be masked
|
|
|
|
Returns:
|
|
-----------
|
|
overwrites the .tif file directly
|
|
|
|
"""
|
|
|
|
# open raster
|
|
raster = gdal.Open(fn, gdal.GA_Update)
|
|
# mask raster
|
|
for i in range(raster.RasterCount):
|
|
out_band = raster.GetRasterBand(i+1)
|
|
out_data = out_band.ReadAsArray()
|
|
out_band.SetNoDataValue(0)
|
|
no_data_value = out_band.GetNoDataValue()
|
|
out_data[mask] = no_data_value
|
|
out_band.WriteArray(out_data)
|
|
# close dataset and flush cache
|
|
raster = None
|
|
|
|
|
|
|