forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
795 lines
32 KiB
Python
795 lines
32 KiB
Python
"""This module contains all the functions needed to preprocess the satellite images before the
|
|
shoreline can be extracted. This includes creating a cloud mask and
|
|
pansharpening/downsampling the multispectral bands.
|
|
|
|
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
|
|
"""
|
|
|
|
# load modules
|
|
import os
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pdb
|
|
|
|
# image processing modules
|
|
import skimage.transform as transform
|
|
import skimage.morphology as morphology
|
|
import sklearn.decomposition as decomposition
|
|
import skimage.exposure as exposure
|
|
|
|
# other modules
|
|
from osgeo import gdal, ogr, osr
|
|
from pylab import ginput
|
|
import pickle
|
|
import matplotlib.path as mpltPath
|
|
|
|
# own modules
|
|
import SDS_tools
|
|
|
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
|
|
|
def create_cloud_mask(im_qa, satname):
|
|
"""
|
|
Creates a cloud mask using the information contained in the QA band.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
im_qa: np.array
|
|
Image containing the QA band
|
|
satname: string
|
|
short name for the satellite (L5, L7, L8 or S2)
|
|
|
|
Returns:
|
|
-----------
|
|
cloud_mask : np.array
|
|
A boolean array with True if a pixel is cloudy and False otherwise
|
|
"""
|
|
|
|
# convert QA bits (the bits allocated to cloud cover vary depending on the satellite mission)
|
|
if satname == 'L8':
|
|
cloud_values = [2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908]
|
|
elif satname == 'L7' or satname == 'L5' or satname == 'L4':
|
|
cloud_values = [752, 756, 760, 764]
|
|
elif satname == 'S2':
|
|
cloud_values = [1024, 2048] # 1024 = dense cloud, 2048 = cirrus clouds
|
|
|
|
# find which pixels have bits corresponding to cloud values
|
|
cloud_mask = np.isin(im_qa, cloud_values)
|
|
|
|
# remove isolated cloud pixels (there are some in the swash zone and they are not clouds)
|
|
if sum(sum(cloud_mask)) > 0 and sum(sum(~cloud_mask)) > 0:
|
|
morphology.remove_small_objects(cloud_mask, min_size=10, connectivity=1, in_place=True)
|
|
|
|
return cloud_mask
|
|
|
|
def hist_match(source, template):
|
|
"""
|
|
Adjust the pixel values of a grayscale image such that its histogram matches that of a
|
|
target image.
|
|
|
|
Arguments:
|
|
-----------
|
|
source: np.array
|
|
Image to transform; the histogram is computed over the flattened
|
|
array
|
|
template: np.array
|
|
Template image; can have different dimensions to source
|
|
Returns:
|
|
-----------
|
|
matched: np.array
|
|
The transformed output image
|
|
"""
|
|
|
|
oldshape = source.shape
|
|
source = source.ravel()
|
|
template = template.ravel()
|
|
|
|
# get the set of unique pixel values and their corresponding indices and
|
|
# counts
|
|
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
|
|
return_counts=True)
|
|
t_values, t_counts = np.unique(template, return_counts=True)
|
|
|
|
# take the cumsum of the counts and normalize by the number of pixels to
|
|
# get the empirical cumulative distribution functions for the source and
|
|
# template images (maps pixel value --> quantile)
|
|
s_quantiles = np.cumsum(s_counts).astype(np.float64)
|
|
s_quantiles /= s_quantiles[-1]
|
|
t_quantiles = np.cumsum(t_counts).astype(np.float64)
|
|
t_quantiles /= t_quantiles[-1]
|
|
|
|
# interpolate linearly to find the pixel values in the template image
|
|
# that correspond most closely to the quantiles in the source image
|
|
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
|
|
|
|
return interp_t_values[bin_idx].reshape(oldshape)
|
|
|
|
def pansharpen(im_ms, im_pan, cloud_mask):
|
|
"""
|
|
Pansharpens a multispectral image, using the panchromatic band and a cloud mask.
|
|
A PCA is applied to the image, then the 1st PC is replaced with the panchromatic band.
|
|
Note that it is essential to match the histrograms of the 1st PC and the panchromatic band
|
|
before replacing and inverting the PCA.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
im_ms: np.array
|
|
Multispectral image to pansharpen (3D)
|
|
im_pan: np.array
|
|
Panchromatic band (2D)
|
|
cloud_mask: np.array
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
Returns:
|
|
-----------
|
|
im_ms_ps: np.ndarray
|
|
Pansharpened multispectral image (3D)
|
|
"""
|
|
|
|
# reshape image into vector and apply cloud mask
|
|
vec = im_ms.reshape(im_ms.shape[0] * im_ms.shape[1], im_ms.shape[2])
|
|
vec_mask = cloud_mask.reshape(im_ms.shape[0] * im_ms.shape[1])
|
|
vec = vec[~vec_mask, :]
|
|
# apply PCA to multispectral bands
|
|
pca = decomposition.PCA()
|
|
vec_pcs = pca.fit_transform(vec)
|
|
|
|
# replace 1st PC with pan band (after matching histograms)
|
|
vec_pan = im_pan.reshape(im_pan.shape[0] * im_pan.shape[1])
|
|
vec_pan = vec_pan[~vec_mask]
|
|
vec_pcs[:,0] = hist_match(vec_pan, vec_pcs[:,0])
|
|
vec_ms_ps = pca.inverse_transform(vec_pcs)
|
|
|
|
# reshape vector into image
|
|
vec_ms_ps_full = np.ones((len(vec_mask), im_ms.shape[2])) * np.nan
|
|
vec_ms_ps_full[~vec_mask,:] = vec_ms_ps
|
|
im_ms_ps = vec_ms_ps_full.reshape(im_ms.shape[0], im_ms.shape[1], im_ms.shape[2])
|
|
|
|
return im_ms_ps
|
|
|
|
|
|
def rescale_image_intensity(im, cloud_mask, prob_high):
|
|
"""
|
|
Rescales the intensity of an image (multispectral or single band) by applying
|
|
a cloud mask and clipping the prob_high upper percentile. This functions allows
|
|
to stretch the contrast of an image, only for visualisation purposes.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
im: np.array
|
|
Image to rescale, can be 3D (multispectral) or 2D (single band)
|
|
cloud_mask: np.array
|
|
2D cloud mask with True where cloud pixels are
|
|
prob_high: float
|
|
probability of exceedence used to calculate the upper percentile
|
|
|
|
Returns:
|
|
-----------
|
|
im_adj: np.array
|
|
The rescaled image
|
|
"""
|
|
|
|
# lower percentile is set to 0
|
|
prc_low = 0
|
|
|
|
# reshape the 2D cloud mask into a 1D vector
|
|
vec_mask = cloud_mask.reshape(im.shape[0] * im.shape[1])
|
|
|
|
# if image contains several bands, stretch the contrast for each band
|
|
if len(im.shape) > 2:
|
|
# reshape into a vector
|
|
vec = im.reshape(im.shape[0] * im.shape[1], im.shape[2])
|
|
# initiliase with NaN values
|
|
vec_adj = np.ones((len(vec_mask), im.shape[2])) * np.nan
|
|
# loop through the bands
|
|
for i in range(im.shape[2]):
|
|
# find the higher percentile (based on prob)
|
|
prc_high = np.percentile(vec[~vec_mask, i], prob_high)
|
|
# clip the image around the 2 percentiles and rescale the contrast
|
|
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask, i],
|
|
in_range=(prc_low, prc_high))
|
|
vec_adj[~vec_mask,i] = vec_rescaled
|
|
# reshape into image
|
|
im_adj = vec_adj.reshape(im.shape[0], im.shape[1], im.shape[2])
|
|
|
|
# if image only has 1 bands (grayscale image)
|
|
else:
|
|
vec = im.reshape(im.shape[0] * im.shape[1])
|
|
vec_adj = np.ones(len(vec_mask)) * np.nan
|
|
prc_high = np.percentile(vec[~vec_mask], prob_high)
|
|
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask], in_range=(prc_low, prc_high))
|
|
vec_adj[~vec_mask] = vec_rescaled
|
|
im_adj = vec_adj.reshape(im.shape[0], im.shape[1])
|
|
|
|
return im_adj
|
|
|
|
def preprocess_single(fn, satname):
|
|
"""
|
|
Reads the image and outputs the pansharpened/down-sampled multispectral bands, the
|
|
georeferencing vector of the image (coordinates of the upper left pixel), the cloud mask and
|
|
the QA band. For Landsat 7-8 it also outputs the panchromatic band and for Sentinel-2 it also
|
|
outputs the 20m SWIR band.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
fn: str or list of str
|
|
filename of the .TIF file containing the image
|
|
for L7, L8 and S2 this is a list of filenames, one filename for each band at different
|
|
resolution (30m and 15m for Landsat 7-8, 10m, 20m, 60m for Sentinel-2)
|
|
satname: str
|
|
name of the satellite mission (e.g., 'L5')
|
|
|
|
Returns:
|
|
-----------
|
|
im_ms: np.array
|
|
3D array containing the pansharpened/down-sampled bands (B,G,R,NIR,SWIR1)
|
|
georef: np.array
|
|
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] defining the
|
|
coordinates of the top-left pixel of the image
|
|
cloud_mask: np.array
|
|
2D cloud mask with True where cloud pixels are
|
|
im_extra : np.array
|
|
2D array containing the 20m resolution SWIR band for Sentinel-2 and the 15m resolution
|
|
panchromatic band for Landsat 7 and Landsat 8. This field is empty for Landsat 5.
|
|
imQA: np.array
|
|
2D array containing the QA band, from which the cloud_mask can be computed.
|
|
|
|
"""
|
|
|
|
#=============================================================================================#
|
|
# L5 images
|
|
#=============================================================================================#
|
|
if satname == 'L5':
|
|
|
|
# read all bands
|
|
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
|
georef = np.array(data.GetGeoTransform())
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im_ms = np.stack(bands, 2)
|
|
|
|
# down-sample to 15 m (half of the original pixel size)
|
|
nrows = im_ms.shape[0]*2
|
|
ncols = im_ms.shape[1]*2
|
|
|
|
# create cloud mask
|
|
im_qa = im_ms[:,:,5]
|
|
im_ms = im_ms[:,:,:-1]
|
|
cloud_mask = create_cloud_mask(im_qa, satname)
|
|
|
|
# resize the image using bilinear interpolation (order 1)
|
|
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True,
|
|
mode='constant')
|
|
# resize the image using nearest neighbour interpolation (order 0)
|
|
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True,
|
|
mode='constant').astype('bool_')
|
|
|
|
# adjust georeferencing vector to the new image size
|
|
# scale becomes 15m and the origin is adjusted to the center of new top left pixel
|
|
georef[1] = 15
|
|
georef[5] = -15
|
|
georef[0] = georef[0] + 7.5
|
|
georef[3] = georef[3] - 7.5
|
|
|
|
# check if -inf or nan values on any band and add to cloud mask
|
|
for k in range(im_ms.shape[2]):
|
|
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
|
im_nan = np.isnan(im_ms[:,:,k])
|
|
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
|
|
|
# calculate cloud cover
|
|
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
|
# no extra image for Landsat 5 (they are all 30 m bands)
|
|
im_extra = []
|
|
imQA = im_qa
|
|
|
|
#=============================================================================================#
|
|
# L7 images
|
|
#=============================================================================================#
|
|
elif satname == 'L7':
|
|
|
|
# read pan image
|
|
fn_pan = fn[0]
|
|
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
|
|
georef = np.array(data.GetGeoTransform())
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im_pan = np.stack(bands, 2)[:,:,0]
|
|
|
|
# size of pan image
|
|
nrows = im_pan.shape[0]
|
|
ncols = im_pan.shape[1]
|
|
|
|
# read ms image
|
|
fn_ms = fn[1]
|
|
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im_ms = np.stack(bands, 2)
|
|
|
|
# create cloud mask
|
|
im_qa = im_ms[:,:,5]
|
|
cloud_mask = create_cloud_mask(im_qa, satname)
|
|
|
|
# resize the image using bilinear interpolation (order 1)
|
|
im_ms = im_ms[:,:,:5]
|
|
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True,
|
|
mode='constant')
|
|
# resize the image using nearest neighbour interpolation (order 0)
|
|
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True,
|
|
mode='constant').astype('bool_')
|
|
# check if -inf or nan values on any band and eventually add those pixels to cloud mask
|
|
for k in range(im_ms.shape[2]+1):
|
|
if k == 5:
|
|
im_inf = np.isin(im_pan, -np.inf)
|
|
im_nan = np.isnan(im_pan)
|
|
else:
|
|
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
|
im_nan = np.isnan(im_ms[:,:,k])
|
|
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
|
|
|
# calculate cloud cover
|
|
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
|
|
|
# pansharpen Green, Red, NIR (where there is overlapping with pan band in L7)
|
|
try:
|
|
im_ms_ps = pansharpen(im_ms[:,:,[1,2,3]], im_pan, cloud_mask)
|
|
except: # if pansharpening fails, keep downsampled bands (for long runs)
|
|
im_ms_ps = im_ms[:,:,[1,2,3]]
|
|
# add downsampled Blue and SWIR1 bands
|
|
im_ms_ps = np.append(im_ms[:,:,[0]], im_ms_ps, axis=2)
|
|
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[4]], axis=2)
|
|
|
|
im_ms = im_ms_ps.copy()
|
|
# the extra image is the 15m panchromatic band
|
|
im_extra = im_pan
|
|
imQA = im_qa
|
|
|
|
#=============================================================================================#
|
|
# L8 images
|
|
#=============================================================================================#
|
|
elif satname == 'L8':
|
|
|
|
# read pan image
|
|
fn_pan = fn[0]
|
|
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
|
|
georef = np.array(data.GetGeoTransform())
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im_pan = np.stack(bands, 2)[:,:,0]
|
|
|
|
# size of pan image
|
|
nrows = im_pan.shape[0]
|
|
ncols = im_pan.shape[1]
|
|
|
|
# read ms image
|
|
fn_ms = fn[1]
|
|
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im_ms = np.stack(bands, 2)
|
|
|
|
# create cloud mask
|
|
im_qa = im_ms[:,:,5]
|
|
cloud_mask = create_cloud_mask(im_qa, satname)
|
|
|
|
# resize the image using bilinear interpolation (order 1)
|
|
im_ms = im_ms[:,:,:5]
|
|
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True,
|
|
mode='constant')
|
|
# resize the image using nearest neighbour interpolation (order 0)
|
|
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True,
|
|
mode='constant').astype('bool_')
|
|
# check if -inf or nan values on any band and eventually add those pixels to cloud mask
|
|
for k in range(im_ms.shape[2]+1):
|
|
if k == 5:
|
|
im_inf = np.isin(im_pan, -np.inf)
|
|
im_nan = np.isnan(im_pan)
|
|
else:
|
|
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
|
im_nan = np.isnan(im_ms[:,:,k])
|
|
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
|
|
|
# calculate cloud cover
|
|
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
|
|
|
# pansharpen Blue, Green, Red (where there is overlapping with pan band in L8)
|
|
try:
|
|
im_ms_ps = pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask)
|
|
except: # if pansharpening fails, keep downsampled bands (for long runs)
|
|
im_ms_ps = im_ms[:,:,[0,1,2]]
|
|
# add downsampled NIR and SWIR1 bands
|
|
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
|
|
|
|
im_ms = im_ms_ps.copy()
|
|
# the extra image is the 15m panchromatic band
|
|
im_extra = im_pan
|
|
imQA = im_qa
|
|
|
|
#=============================================================================================#
|
|
# S2 images
|
|
#=============================================================================================#
|
|
if satname == 'S2':
|
|
|
|
# read 10m bands (R,G,B,NIR)
|
|
fn10 = fn[0]
|
|
data = gdal.Open(fn10, gdal.GA_ReadOnly)
|
|
georef = np.array(data.GetGeoTransform())
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im10 = np.stack(bands, 2)
|
|
im10 = im10/10000 # TOA scaled to 10000
|
|
|
|
# if image contains only zeros (can happen with S2), skip the image
|
|
if sum(sum(sum(im10))) < 1:
|
|
im_ms = []
|
|
georef = []
|
|
# skip the image by giving it a full cloud_mask
|
|
cloud_mask = np.ones((im10.shape[0],im10.shape[1])).astype('bool')
|
|
return im_ms, georef, cloud_mask, [], []
|
|
|
|
# size of 10m bands
|
|
nrows = im10.shape[0]
|
|
ncols = im10.shape[1]
|
|
|
|
# read 20m band (SWIR1)
|
|
fn20 = fn[1]
|
|
data = gdal.Open(fn20, gdal.GA_ReadOnly)
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im20 = np.stack(bands, 2)
|
|
im20 = im20[:,:,0]
|
|
im20 = im20/10000 # TOA scaled to 10000
|
|
|
|
# resize the image using bilinear interpolation (order 1)
|
|
im_swir = transform.resize(im20, (nrows, ncols), order=1, preserve_range=True,
|
|
mode='constant')
|
|
im_swir = np.expand_dims(im_swir, axis=2)
|
|
|
|
# append down-sampled SWIR1 band to the other 10m bands
|
|
im_ms = np.append(im10, im_swir, axis=2)
|
|
|
|
# create cloud mask using 60m QA band (not as good as Landsat cloud cover)
|
|
fn60 = fn[2]
|
|
data = gdal.Open(fn60, gdal.GA_ReadOnly)
|
|
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
|
im60 = np.stack(bands, 2)
|
|
imQA = im60[:,:,0]
|
|
cloud_mask = create_cloud_mask(imQA, satname)
|
|
# resize the cloud mask using nearest neighbour interpolation (order 0)
|
|
cloud_mask = transform.resize(cloud_mask,(nrows, ncols), order=0, preserve_range=True,
|
|
mode='constant')
|
|
# check if -inf or nan values on any band and add to cloud mask
|
|
for k in range(im_ms.shape[2]):
|
|
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
|
im_nan = np.isnan(im_ms[:,:,k])
|
|
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
|
|
|
# calculate cloud cover
|
|
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
|
# the extra image is the 20m SWIR band
|
|
im_extra = im20
|
|
|
|
return im_ms, georef, cloud_mask, im_extra, imQA
|
|
|
|
|
|
def create_jpg(im_ms, cloud_mask, date, satname, filepath):
|
|
"""
|
|
Saves a .jpg file with the RGB image as well as the NIR and SWIR1 grayscale images.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
im_ms: np.array
|
|
3D array containing the pansharpened/down-sampled bands (B,G,R,NIR,SWIR1)
|
|
cloud_mask: np.array
|
|
2D cloud mask with True where cloud pixels are
|
|
date: str
|
|
String containing the date at which the image was acquired
|
|
satname: str
|
|
name of the satellite mission (e.g., 'L5')
|
|
|
|
Returns:
|
|
-----------
|
|
Saves a .jpg image corresponding to the preprocessed satellite image
|
|
|
|
"""
|
|
|
|
# rescale image intensity for display purposes
|
|
im_RGB = rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
|
|
im_NIR = rescale_image_intensity(im_ms[:,:,3], cloud_mask, 99.9)
|
|
im_SWIR = rescale_image_intensity(im_ms[:,:,4], cloud_mask, 99.9)
|
|
|
|
# make figure
|
|
fig = plt.figure()
|
|
fig.set_size_inches([18,9])
|
|
fig.set_tight_layout(True)
|
|
ax1 = fig.add_subplot(111)
|
|
ax1.axis('off')
|
|
ax1.imshow(im_RGB)
|
|
ax1.set_title(date + ' ' + satname, fontsize=16)
|
|
|
|
# if im_RGB.shape[1] > 2*im_RGB.shape[0]:
|
|
# ax1 = fig.add_subplot(311)
|
|
# ax2 = fig.add_subplot(312)
|
|
# ax3 = fig.add_subplot(313)
|
|
# else:
|
|
# ax1 = fig.add_subplot(131)
|
|
# ax2 = fig.add_subplot(132)
|
|
# ax3 = fig.add_subplot(133)
|
|
# # RGB
|
|
# ax1.axis('off')
|
|
# ax1.imshow(im_RGB)
|
|
# ax1.set_title(date + ' ' + satname, fontsize=16)
|
|
# # NIR
|
|
# ax2.axis('off')
|
|
# ax2.imshow(im_NIR, cmap='seismic')
|
|
# ax2.set_title('Near Infrared', fontsize=16)
|
|
# # SWIR
|
|
# ax3.axis('off')
|
|
# ax3.imshow(im_SWIR, cmap='seismic')
|
|
# ax3.set_title('Short-wave Infrared', fontsize=16)
|
|
|
|
# save figure
|
|
plt.rcParams['savefig.jpeg_quality'] = 100
|
|
fig.savefig(os.path.join(filepath,
|
|
date + '_' + satname + '.jpg'), dpi=150)
|
|
plt.close()
|
|
|
|
|
|
def save_jpg(metadata, settings):
|
|
"""
|
|
Saves a .jpg image for all the images contained in metadata.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
metadata: dict
|
|
contains all the information about the satellite images that were downloaded
|
|
settings: dict
|
|
contains the following fields:
|
|
'cloud_thresh': float
|
|
value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted
|
|
'sitename': string
|
|
name of the site (also name of the folder where the images are stored)
|
|
|
|
Returns:
|
|
-----------
|
|
|
|
"""
|
|
|
|
sitename = settings['inputs']['sitename']
|
|
cloud_thresh = settings['cloud_thresh']
|
|
|
|
# create subfolder to store the jpg files
|
|
filepath_jpg = os.path.join(os.getcwd(), 'data', sitename, 'jpg_files', 'preprocessed')
|
|
try:
|
|
os.makedirs(filepath_jpg)
|
|
except:
|
|
print('')
|
|
|
|
# loop through satellite list
|
|
for satname in metadata.keys():
|
|
|
|
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
|
|
filenames = metadata[satname]['filenames']
|
|
|
|
# loop through images
|
|
for i in range(len(filenames)):
|
|
# image filename
|
|
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
|
|
# read and preprocess image
|
|
im_ms, georef, cloud_mask, im_extra, imQA = preprocess_single(fn, satname)
|
|
# calculate cloud cover
|
|
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
|
|
(cloud_mask.shape[0]*cloud_mask.shape[1]))
|
|
# skip image if cloud cover is above threshold
|
|
if cloud_cover > cloud_thresh or cloud_cover == 1:
|
|
continue
|
|
# save .jpg with date and satellite in the title
|
|
date = filenames[i][:10]
|
|
create_jpg(im_ms, cloud_mask, date, satname, filepath_jpg)
|
|
|
|
def get_reference_sl_manual(metadata, settings):
|
|
"""
|
|
Allows the user to manually digitize a reference shoreline that is used seed the shoreline
|
|
detection algorithm. The reference shoreline helps to detect the outliers, making the shoreline
|
|
detection more robust.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
metadata: dict
|
|
contains all the information about the satellite images that were downloaded
|
|
settings: dict
|
|
contains the following fields:
|
|
'cloud_thresh': float
|
|
value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted
|
|
'sitename': string
|
|
name of the site (also name of the folder where the images are stored)
|
|
'output_epsg': int
|
|
epsg code of the desired spatial reference system
|
|
|
|
Returns:
|
|
-----------
|
|
reference_shoreline: np.array
|
|
coordinates of the reference shoreline that was manually digitized
|
|
|
|
"""
|
|
|
|
sitename = settings['inputs']['sitename']
|
|
|
|
# check if reference shoreline already exists in the corresponding folder
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename)
|
|
filename = sitename + '_reference_shoreline.pkl'
|
|
if filename in os.listdir(filepath):
|
|
print('Reference shoreline already exists and was loaded')
|
|
with open(os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'rb') as f:
|
|
refsl = pickle.load(f)
|
|
return refsl
|
|
|
|
else:
|
|
# first try to use S2 images (10m res for manually digitizing the reference shoreline)
|
|
if 'S2' in metadata.keys():
|
|
satname = 'S2'
|
|
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
|
|
filenames = metadata[satname]['filenames']
|
|
# if no S2 images, try L8 (15m res in the RGB with pansharpening)
|
|
elif not 'S2' in metadata.keys() and 'L8' in metadata.keys():
|
|
satname = 'L8'
|
|
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
|
|
filenames = metadata[satname]['filenames']
|
|
# if no S2 images and no L8, use L5 images (L7 images have black diagonal bands making it
|
|
# hard to manually digitize a shoreline)
|
|
elif not 'S2' in metadata.keys() and not 'L8' in metadata.keys() and 'L5' in metadata.keys():
|
|
satname = 'L5'
|
|
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
|
|
filenames = metadata[satname]['filenames']
|
|
else:
|
|
print('You cannot digitize the shoreline on L7 images, add another L8, S2 or L5 to your dataset.')
|
|
|
|
# loop trhough the images
|
|
for i in range(len(filenames)):
|
|
|
|
# read image
|
|
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
|
|
im_ms, georef, cloud_mask, im_extra, imQA = preprocess_single(fn, satname)
|
|
# calculate cloud cover
|
|
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
|
|
(cloud_mask.shape[0]*cloud_mask.shape[1]))
|
|
# skip image if cloud cover is above threshold
|
|
if cloud_cover > settings['cloud_thresh']:
|
|
continue
|
|
# rescale image intensity for display purposes
|
|
im_RGB = rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
|
|
# plot the image RGB on a figure
|
|
fig = plt.figure()
|
|
fig.set_size_inches([18,9])
|
|
fig.set_tight_layout(True)
|
|
plt.axis('off')
|
|
plt.imshow(im_RGB)
|
|
# decide if the image if good enough for digitizing the shoreline
|
|
plt.title('click <keep> if image is clear enough to digitize the shoreline.\n' +
|
|
'If not (too cloudy) click on <skip> to get another image', fontsize=14)
|
|
keep_button = plt.text(0, 0.9, 'keep', size=16, ha="left", va="top",
|
|
transform=plt.gca().transAxes,
|
|
bbox=dict(boxstyle="square", ec='k',fc='w'))
|
|
skip_button = plt.text(1, 0.9, 'skip', size=16, ha="right", va="top",
|
|
transform=plt.gca().transAxes,
|
|
bbox=dict(boxstyle="square", ec='k',fc='w'))
|
|
mng = plt.get_current_fig_manager()
|
|
mng.window.showMaximized()
|
|
# let user click on the image once
|
|
pt_input = ginput(n=1, timeout=1000000, show_clicks=True)
|
|
pt_input = np.array(pt_input)
|
|
# if clicks next to <skip>, show another image
|
|
if pt_input[0][0] > im_ms.shape[1]/2:
|
|
plt.close()
|
|
continue
|
|
else:
|
|
# remove keep and skip buttons
|
|
keep_button.set_visible(False)
|
|
skip_button.set_visible(False)
|
|
# update title (instructions)
|
|
plt.title('Click points along the shoreline every ~500 m.\n' +
|
|
'Start at one end of the beach.\n' + 'When finished digitizing, click <ENTER>',
|
|
fontsize=14)
|
|
plt.draw()
|
|
# let user click on the shoreline
|
|
pts = ginput(n=50000, timeout=1e9, show_clicks=True)
|
|
pts_pix = np.array(pts)
|
|
|
|
# interpolate between points and show the output to the user
|
|
pts_pix_interp = np.expand_dims(np.array([np.nan, np.nan]),axis=0)
|
|
for k in range(len(pts_pix)-1):
|
|
if pts_pix[k,0] < pts_pix[k+1,0]:
|
|
x = pts_pix[[k,k+1],0]
|
|
y = pts_pix[[k,k+1],1]
|
|
else:
|
|
x = pts_pix[[k+1,k],0]
|
|
y = pts_pix[[k+1,k],1]
|
|
xvals = np.linspace(x[0],x[1],50)
|
|
yinterp = np.interp(xvals,x,y)
|
|
pts_pix_interp = np.append(pts_pix_interp,
|
|
np.transpose(np.array([xvals,yinterp])), axis=0)
|
|
pts_pix_interp = np.delete(pts_pix_interp,0,axis=0)
|
|
plt.plot(pts_pix_interp[:,0], pts_pix_interp[:,1], 'r.', markersize=5)
|
|
plt.title('Saving reference shoreline as ' + sitename + '_reference_shoreline.pkl ...')
|
|
plt.draw()
|
|
ginput(n=1, timeout=5, show_clicks=True)
|
|
plt.close()
|
|
|
|
# convert image coordinates to world coordinates
|
|
pts_world = SDS_tools.convert_pix2world(pts_pix_interp[:,[1,0]], georef)
|
|
image_epsg = metadata[satname]['epsg'][i]
|
|
pts_coords = SDS_tools.convert_epsg(pts_world, image_epsg, settings['output_epsg'])
|
|
|
|
# save the reference shoreline
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename)
|
|
with open(os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'wb') as f:
|
|
pickle.dump(pts_coords, f)
|
|
print('Reference shoreline has been saved')
|
|
break
|
|
|
|
return pts_coords
|
|
|
|
def get_reference_sl_Australia(settings):
|
|
"""
|
|
Automatically finds a reference shoreline from a high resolution coastline of Australia
|
|
(Smartline from Geoscience Australia). It finds the points of the national coastline vector
|
|
that are situated inside the area of interest (polygon).
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
settings: dict
|
|
contains the following fields:
|
|
'cloud_thresh': float
|
|
value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted
|
|
'sitename': string
|
|
name of the site (also name of the folder where the images are stored)
|
|
'output_epsg': int
|
|
epsg code of the desired spatial reference system
|
|
|
|
Returns:
|
|
-----------
|
|
ref_sl: np.array
|
|
coordinates of the reference shoreline found in the shapefile
|
|
|
|
"""
|
|
|
|
# load high-resolution shoreline of Australia
|
|
filename = os.path.join(os.getcwd(), 'data', 'shoreline_Australia.pkl')
|
|
with open(filename, 'rb') as f:
|
|
sl = pickle.load(f)
|
|
# spatial reference system of this shoreline
|
|
sl_epsg = 4283 # GDA94 geographic
|
|
|
|
# only select the points that sit inside the area of interest (polygon)
|
|
polygon = settings['inputs']['polygon']
|
|
# spatial reference system of the polygon (latitudes and longitudes)
|
|
polygon_epsg = 4326 # WGS84 geographic
|
|
polygon = SDS_tools.convert_epsg(np.array(polygon[0]), polygon_epsg, sl_epsg)[:,:-1]
|
|
|
|
# use matplotlib function Path
|
|
path = mpltPath.Path(polygon)
|
|
sl_inside = sl[np.where(path.contains_points(sl))]
|
|
|
|
# convert to desired output coordinate system
|
|
ref_sl = SDS_tools.convert_epsg(sl_inside, sl_epsg, settings['output_epsg'])[:,:-1]
|
|
|
|
# make a figure for quality control
|
|
plt.figure()
|
|
plt.axis('equal')
|
|
plt.xlabel('Eastings [m]')
|
|
plt.ylabel('Northings [m]')
|
|
plt.plot(ref_sl[:,0], ref_sl[:,1], 'r.')
|
|
polygon = SDS_tools.convert_epsg(polygon, sl_epsg, settings['output_epsg'])[:,:-1]
|
|
plt.plot(polygon[:,0], polygon[:,1], 'k-')
|
|
|
|
return ref_sl |