forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
799 lines
34 KiB
Python
799 lines
34 KiB
Python
"""This module contains all the functions needed to download the satellite images from the Google
|
|
Earth Engine Server
|
|
|
|
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
|
|
"""
|
|
|
|
# load modules
|
|
import os
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pdb
|
|
|
|
# earth engine modules
|
|
import ee
|
|
from urllib.request import urlretrieve
|
|
import zipfile
|
|
import copy
|
|
import gdal_merge
|
|
|
|
# additional modules
|
|
from datetime import datetime
|
|
import pytz
|
|
import pickle
|
|
import skimage.morphology as morphology
|
|
|
|
# own modules
|
|
import SDS_preprocess, SDS_tools
|
|
|
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
|
|
|
|
|
# initialise connection with GEE server
|
|
ee.Initialize()
|
|
|
|
def download_tif(image, polygon, bandsId, filepath):
|
|
"""
|
|
Downloads a .TIF image from the ee server and stores it in a temp file
|
|
|
|
Arguments:
|
|
-----------
|
|
image: ee.Image
|
|
Image object to be downloaded
|
|
polygon: list
|
|
polygon containing the lon/lat coordinates to be extracted
|
|
longitudes in the first column and latitudes in the second column
|
|
bandsId: list of dict
|
|
list of bands to be downloaded
|
|
filepath: location where the temporary file should be saved
|
|
|
|
"""
|
|
|
|
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
|
|
'image': image.serialize(),
|
|
'region': polygon,
|
|
'bands': bandsId,
|
|
'filePerBand': 'false',
|
|
'name': 'data',
|
|
}))
|
|
local_zip, headers = urlretrieve(url)
|
|
with zipfile.ZipFile(local_zip) as local_zipfile:
|
|
return local_zipfile.extract('data.tif', filepath)
|
|
|
|
|
|
def retrieve_images(inputs):
|
|
"""
|
|
Downloads all images from Landsat 5, Landsat 7, Landsat 8 and Sentinel-2 covering the area of
|
|
interest and acquired between the specified dates.
|
|
The downloaded images are in .TIF format and organised in subfolders, divided by satellite
|
|
mission and pixel resolution.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
inputs: dict
|
|
dictionnary that contains the following fields:
|
|
'sitename': str
|
|
String containig the name of the site
|
|
'polygon': list
|
|
polygon containing the lon/lat coordinates to be extracted
|
|
longitudes in the first column and latitudes in the second column
|
|
'dates': list of str
|
|
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd'
|
|
e.g. ['1987-01-01', '2018-01-01']
|
|
'sat_list': list of str
|
|
list that contains the names of the satellite missions to include
|
|
e.g. ['L5', 'L7', 'L8', 'S2']
|
|
|
|
Returns:
|
|
-----------
|
|
metadata: dict
|
|
contains all the information about the satellite images that were downloaded
|
|
|
|
"""
|
|
|
|
# read inputs dictionnary
|
|
sitename = inputs['sitename']
|
|
polygon = inputs['polygon']
|
|
dates = inputs['dates']
|
|
sat_list= inputs['sat_list']
|
|
|
|
# format in which the images are downloaded
|
|
suffix = '.tif'
|
|
|
|
# initialize metadata dictionnary (stores timestamps and georefencing accuracy of each image)
|
|
metadata = dict([])
|
|
|
|
# create directories
|
|
try:
|
|
os.makedirs(os.path.join(os.getcwd(), 'data',sitename))
|
|
except:
|
|
print('')
|
|
|
|
#=============================================================================================#
|
|
# download L5 images
|
|
#=============================================================================================#
|
|
|
|
if 'L5' in sat_list or 'Landsat5' in sat_list:
|
|
|
|
satname = 'L5'
|
|
# create a subfolder to store L5 images
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename, satname, '30m')
|
|
try:
|
|
os.makedirs(filepath)
|
|
except:
|
|
print('')
|
|
|
|
# Landsat 5 collection
|
|
input_col = ee.ImageCollection('LANDSAT/LT05/C01/T1_TOA')
|
|
# filter by location and dates
|
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
|
|
# get all images in the filtered collection
|
|
im_all = flt_col.getInfo().get('features')
|
|
# remove very cloudy images (>95% cloud)
|
|
cloud_cover = [_['properties']['CLOUD_COVER'] for _ in im_all]
|
|
if np.any([_ > 95 for _ in cloud_cover]):
|
|
idx_delete = np.where([_ > 95 for _ in cloud_cover])[0]
|
|
im_all_cloud = [x for k,x in enumerate(im_all) if k not in idx_delete]
|
|
else:
|
|
im_all_cloud = im_all
|
|
n_img = len(im_all_cloud)
|
|
# print how many images there are
|
|
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
|
|
|
|
# loop trough images
|
|
timestamps = []
|
|
acc_georef = []
|
|
filenames = []
|
|
all_names = []
|
|
im_epsg = []
|
|
for i in range(n_img):
|
|
|
|
# find each image in ee database
|
|
im = ee.Image(im_all_cloud[i].get('id'))
|
|
# read metadata
|
|
im_dic = im.getInfo()
|
|
# get bands
|
|
im_bands = im_dic.get('bands')
|
|
# get time of acquisition (UNIX time)
|
|
t = im_dic['properties']['system:time_start']
|
|
# convert to datetime
|
|
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
|
timestamps.append(im_timestamp)
|
|
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
|
# get EPSG code of reference system
|
|
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
|
|
# get geometric accuracy
|
|
try:
|
|
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
|
|
except:
|
|
# default value of accuracy (RMSE = 12m)
|
|
acc_georef.append(12)
|
|
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
|
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
|
# bands for L5
|
|
ms_bands = [im_bands[0], im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[7]]
|
|
# filenames for the images
|
|
filename = im_date + '_' + satname + '_' + sitename + suffix
|
|
# if two images taken at the same date add 'dup' in the name (duplicate)
|
|
if any(filename in _ for _ in all_names):
|
|
filename = im_date + '_' + satname + '_' + sitename + '_dup' + suffix
|
|
all_names.append(filename)
|
|
filenames.append(filename)
|
|
# download .TIF image
|
|
local_data = download_tif(im, polygon, ms_bands, filepath)
|
|
# update filename
|
|
try:
|
|
os.rename(local_data, os.path.join(filepath, filename))
|
|
except:
|
|
os.remove(os.path.join(filepath, filename))
|
|
os.rename(local_data, os.path.join(filepath, filename))
|
|
|
|
print(i+1, end='..')
|
|
|
|
# sort timestamps and georef accuracy (downloaded images are sorted by date in directory)
|
|
timestamps_sorted = sorted(timestamps)
|
|
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
|
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
|
filenames_sorted = [filenames[j] for j in idx_sorted]
|
|
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
|
|
# save into dict
|
|
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
|
|
'epsg':im_epsg_sorted, 'filenames':filenames_sorted}
|
|
print('\nFinished with ' + satname)
|
|
|
|
|
|
|
|
#=============================================================================================#
|
|
# download L7 images
|
|
#=============================================================================================#
|
|
|
|
if 'L7' in sat_list or 'Landsat7' in sat_list:
|
|
|
|
satname = 'L7'
|
|
# create subfolders (one for 30m multispectral bands and one for 15m pan bands)
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename, 'L7')
|
|
filepath_pan = os.path.join(filepath, 'pan')
|
|
filepath_ms = os.path.join(filepath, 'ms')
|
|
try:
|
|
os.makedirs(filepath_pan)
|
|
os.makedirs(filepath_ms)
|
|
except:
|
|
print('')
|
|
|
|
# landsat 7 collection
|
|
input_col = ee.ImageCollection('LANDSAT/LE07/C01/T1_RT_TOA')
|
|
# filter by location and dates
|
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
|
|
# get all images in the filtered collection
|
|
im_all = flt_col.getInfo().get('features')
|
|
# remove very cloudy images (>95% cloud)
|
|
cloud_cover = [_['properties']['CLOUD_COVER'] for _ in im_all]
|
|
if np.any([_ > 95 for _ in cloud_cover]):
|
|
idx_delete = np.where([_ > 95 for _ in cloud_cover])[0]
|
|
im_all_cloud = [x for k,x in enumerate(im_all) if k not in idx_delete]
|
|
else:
|
|
im_all_cloud = im_all
|
|
n_img = len(im_all_cloud)
|
|
# print how many images there are
|
|
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
|
|
|
|
# loop trough images
|
|
timestamps = []
|
|
acc_georef = []
|
|
filenames = []
|
|
all_names = []
|
|
im_epsg = []
|
|
for i in range(n_img):
|
|
|
|
# find each image in ee database
|
|
im = ee.Image(im_all_cloud[i].get('id'))
|
|
# read metadata
|
|
im_dic = im.getInfo()
|
|
# get bands
|
|
im_bands = im_dic.get('bands')
|
|
# get time of acquisition (UNIX time)
|
|
t = im_dic['properties']['system:time_start']
|
|
# convert to datetime
|
|
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
|
timestamps.append(im_timestamp)
|
|
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
|
# get EPSG code of reference system
|
|
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
|
|
# get geometric accuracy
|
|
try:
|
|
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
|
|
except:
|
|
# default value of accuracy (RMSE = 12m)
|
|
acc_georef.append(12)
|
|
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
|
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
|
# bands for L7
|
|
pan_band = [im_bands[8]]
|
|
ms_bands = [im_bands[0], im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[9]]
|
|
# filenames for the images
|
|
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + suffix
|
|
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + suffix
|
|
# if two images taken at the same date add 'dup' in the name
|
|
if any(filename_pan in _ for _ in all_names):
|
|
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + '_dup' + suffix
|
|
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + '_dup' + suffix
|
|
all_names.append(filename_pan)
|
|
filenames.append(filename_pan)
|
|
# download .TIF image
|
|
local_data_pan = download_tif(im, polygon, pan_band, filepath_pan)
|
|
local_data_ms = download_tif(im, polygon, ms_bands, filepath_ms)
|
|
# update filename
|
|
try:
|
|
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
|
|
except:
|
|
os.remove(os.path.join(filepath_pan, filename_pan))
|
|
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
|
|
try:
|
|
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
|
|
except:
|
|
os.remove(os.path.join(filepath_ms, filename_ms))
|
|
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
|
|
|
|
print(i+1, end='..')
|
|
|
|
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
|
|
timestamps_sorted = sorted(timestamps)
|
|
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
|
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
|
filenames_sorted = [filenames[j] for j in idx_sorted]
|
|
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
|
|
# save into dict
|
|
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
|
|
'epsg':im_epsg_sorted, 'filenames':filenames_sorted}
|
|
print('\nFinished with ' + satname)
|
|
|
|
|
|
#=============================================================================================#
|
|
# download L8 images
|
|
#=============================================================================================#
|
|
|
|
if 'L8' in sat_list or 'Landsat8' in sat_list:
|
|
|
|
satname = 'L8'
|
|
# create subfolders (one for 30m multispectral bands and one for 15m pan bands)
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename, 'L8')
|
|
filepath_pan = os.path.join(filepath, 'pan')
|
|
filepath_ms = os.path.join(filepath, 'ms')
|
|
try:
|
|
os.makedirs(filepath_pan)
|
|
os.makedirs(filepath_ms)
|
|
except:
|
|
print('')
|
|
|
|
# landsat 8 collection
|
|
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
|
|
# filter by location and dates
|
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
|
|
# get all images in the filtered collection
|
|
im_all = flt_col.getInfo().get('features')
|
|
# remove very cloudy images (>95% cloud)
|
|
cloud_cover = [_['properties']['CLOUD_COVER'] for _ in im_all]
|
|
if np.any([_ > 95 for _ in cloud_cover]):
|
|
idx_delete = np.where([_ > 95 for _ in cloud_cover])[0]
|
|
im_all_cloud = [x for k,x in enumerate(im_all) if k not in idx_delete]
|
|
else:
|
|
im_all_cloud = im_all
|
|
n_img = len(im_all_cloud)
|
|
# print how many images there are
|
|
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
|
|
|
|
# loop trough images
|
|
timestamps = []
|
|
acc_georef = []
|
|
filenames = []
|
|
all_names = []
|
|
im_epsg = []
|
|
for i in range(n_img):
|
|
|
|
# find each image in ee database
|
|
im = ee.Image(im_all_cloud[i].get('id'))
|
|
# read metadata
|
|
im_dic = im.getInfo()
|
|
# get bands
|
|
im_bands = im_dic.get('bands')
|
|
# get time of acquisition (UNIX time)
|
|
t = im_dic['properties']['system:time_start']
|
|
# convert to datetime
|
|
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
|
timestamps.append(im_timestamp)
|
|
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
|
# get EPSG code of reference system
|
|
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
|
|
# get geometric accuracy
|
|
try:
|
|
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
|
|
except:
|
|
# default value of accuracy (RMSE = 12m)
|
|
acc_georef.append(12)
|
|
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
|
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
|
# bands for L8
|
|
pan_band = [im_bands[7]]
|
|
ms_bands = [im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[5], im_bands[11]]
|
|
# filenames for the images
|
|
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + suffix
|
|
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + suffix
|
|
# if two images taken at the same date add 'dup' in the name
|
|
if any(filename_pan in _ for _ in all_names):
|
|
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + '_dup' + suffix
|
|
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + '_dup' + suffix
|
|
all_names.append(filename_pan)
|
|
filenames.append(filename_pan)
|
|
# download .TIF image
|
|
local_data_pan = download_tif(im, polygon, pan_band, filepath_pan)
|
|
local_data_ms = download_tif(im, polygon, ms_bands, filepath_ms)
|
|
# update filename
|
|
try:
|
|
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
|
|
except:
|
|
os.remove(os.path.join(filepath_pan, filename_pan))
|
|
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
|
|
try:
|
|
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
|
|
except:
|
|
os.remove(os.path.join(filepath_ms, filename_ms))
|
|
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
|
|
|
|
print(i+1, end='..')
|
|
|
|
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
|
|
timestamps_sorted = sorted(timestamps)
|
|
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
|
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
|
filenames_sorted = [filenames[j] for j in idx_sorted]
|
|
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
|
|
|
|
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
|
|
'epsg':im_epsg_sorted, 'filenames':filenames_sorted}
|
|
print('\nFinished with ' + satname)
|
|
|
|
#=============================================================================================#
|
|
# download S2 images
|
|
#=============================================================================================#
|
|
|
|
if 'S2' in sat_list or 'Sentinel2' in sat_list:
|
|
|
|
satname = 'S2'
|
|
# create subfolders for the 10m, 20m and 60m multipectral bands
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename, 'S2')
|
|
try:
|
|
os.makedirs(os.path.join(filepath, '10m'))
|
|
os.makedirs(os.path.join(filepath, '20m'))
|
|
os.makedirs(os.path.join(filepath, '60m'))
|
|
except:
|
|
print('')
|
|
|
|
# Sentinel2 collection
|
|
input_col = ee.ImageCollection('COPERNICUS/S2')
|
|
# filter by location and dates
|
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
|
|
# get all images in the filtered collection
|
|
im_all = flt_col.getInfo().get('features')
|
|
# remove duplicates in the collection (there are many in S2 collection)
|
|
timestamps = [datetime.fromtimestamp(_['properties']['system:time_start']/1000,
|
|
tz=pytz.utc) for _ in im_all]
|
|
# utm zone projection
|
|
utm_zones = np.array([int(_['bands'][0]['crs'][5:]) for _ in im_all])
|
|
utm_zone_selected = np.max(np.unique(utm_zones))
|
|
# find the images that were acquired at the same time but have different utm zones
|
|
idx_all = np.arange(0,len(im_all),1)
|
|
idx_covered = np.ones(len(im_all)).astype(bool)
|
|
idx_delete = []
|
|
i = 0
|
|
while 1:
|
|
same_time = np.abs([(timestamps[i]-_).total_seconds() for _ in timestamps]) < 60*60*24
|
|
idx_same_time = np.where(same_time)[0]
|
|
same_utm = utm_zones == utm_zone_selected
|
|
idx_temp = np.where([same_time[j] == True and same_utm[j] == False for j in idx_all])[0]
|
|
idx_keep = idx_same_time[[_ not in idx_temp for _ in idx_same_time ]]
|
|
# if more than 2 images with same date and same utm, drop the last ones
|
|
if len(idx_keep) > 2:
|
|
idx_temp = np.append(idx_temp,idx_keep[-(len(idx_keep)-2):])
|
|
for j in idx_temp:
|
|
idx_delete.append(j)
|
|
idx_covered[idx_same_time] = False
|
|
if np.any(idx_covered):
|
|
i = np.where(idx_covered)[0][0]
|
|
else:
|
|
break
|
|
# update the collection by deleting all those images that have same timestamp and different
|
|
# utm projection
|
|
im_all_updated = [x for k,x in enumerate(im_all) if k not in idx_delete]
|
|
|
|
# remove very cloudy images (>95% cloud)
|
|
cloud_cover = [_['properties']['CLOUDY_PIXEL_PERCENTAGE'] for _ in im_all_updated]
|
|
if np.any([_ > 95 for _ in cloud_cover]):
|
|
idx_delete = np.where([_ > 95 for _ in cloud_cover])[0]
|
|
im_all_cloud = [x for k,x in enumerate(im_all_updated) if k not in idx_delete]
|
|
else:
|
|
im_all_cloud = im_all_updated
|
|
|
|
n_img = len(im_all_cloud)
|
|
# print how many images there are
|
|
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
|
|
|
|
# loop trough images
|
|
timestamps = []
|
|
acc_georef = []
|
|
filenames = []
|
|
all_names = []
|
|
im_epsg = []
|
|
for i in range(n_img):
|
|
|
|
# find each image in ee database
|
|
im = ee.Image(im_all_cloud[i].get('id'))
|
|
# read metadata
|
|
im_dic = im.getInfo()
|
|
# get bands
|
|
im_bands = im_dic.get('bands')
|
|
# get time of acquisition (UNIX time)
|
|
t = im_dic['properties']['system:time_start']
|
|
# convert to datetime
|
|
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
|
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
|
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
|
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
|
# bands for S2
|
|
bands10 = [im_bands[1], im_bands[2], im_bands[3], im_bands[7]]
|
|
bands20 = [im_bands[11]]
|
|
bands60 = [im_bands[15]]
|
|
# filenames for images
|
|
filename10 = im_date + '_' + satname + '_' + sitename + '_' + '10m' + suffix
|
|
filename20 = im_date + '_' + satname + '_' + sitename + '_' + '20m' + suffix
|
|
filename60 = im_date + '_' + satname + '_' + sitename + '_' + '60m' + suffix
|
|
# if two images taken at the same date skip the second image (they are the same)
|
|
if any(filename10 in _ for _ in all_names):
|
|
filename10 = filename10[:filename10.find('.')] + '_dup' + suffix
|
|
filename20 = filename20[:filename20.find('.')] + '_dup' + suffix
|
|
filename60 = filename60[:filename60.find('.')] + '_dup' + suffix
|
|
all_names.append(filename10)
|
|
filenames.append(filename10)
|
|
|
|
# download .TIF image and update filename
|
|
local_data = download_tif(im, polygon, bands10, os.path.join(filepath, '10m'))
|
|
try:
|
|
os.rename(local_data, os.path.join(filepath, '10m', filename10))
|
|
except:
|
|
os.remove(os.path.join(filepath, '10m', filename10))
|
|
os.rename(local_data, os.path.join(filepath, '10m', filename10))
|
|
|
|
local_data = download_tif(im, polygon, bands20, os.path.join(filepath, '20m'))
|
|
try:
|
|
os.rename(local_data, os.path.join(filepath, '20m', filename20))
|
|
except:
|
|
os.remove(os.path.join(filepath, '20m', filename20))
|
|
os.rename(local_data, os.path.join(filepath, '20m', filename20))
|
|
|
|
local_data = download_tif(im, polygon, bands60, os.path.join(filepath, '60m'))
|
|
try:
|
|
os.rename(local_data, os.path.join(filepath, '60m', filename60))
|
|
except:
|
|
os.remove(os.path.join(filepath, '60m', filename60))
|
|
os.rename(local_data, os.path.join(filepath, '60m', filename60))
|
|
|
|
# save timestamp, epsg code and georeferencing accuracy (1 if passed 0 if not passed)
|
|
timestamps.append(im_timestamp)
|
|
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
|
|
# Sentinel-2 products don't provide a georeferencing accuracy (RMSE as in Landsat)
|
|
# but they have a flag indicating if the geometric quality control was passed or failed
|
|
# if passed a value of 1 is stored if faile a value of -1 is stored in the metadata
|
|
try:
|
|
if im_dic['properties']['GEOMETRIC_QUALITY_FLAG'] == 'PASSED':
|
|
acc_georef.append(1)
|
|
else:
|
|
acc_georef.append(-1)
|
|
except:
|
|
acc_georef.append(-1)
|
|
print(i+1, end='..')
|
|
|
|
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
|
|
timestamps_sorted = sorted(timestamps)
|
|
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
|
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
|
filenames_sorted = [filenames[j] for j in idx_sorted]
|
|
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
|
|
|
|
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
|
|
'epsg':im_epsg_sorted, 'filenames':filenames_sorted}
|
|
print('\nFinished with ' + satname)
|
|
|
|
# merge overlapping images (only if polygon is at the edge of an image)
|
|
if 'S2' in metadata.keys():
|
|
metadata = merge_overlapping_images(metadata,inputs)
|
|
|
|
# save metadata dict
|
|
filepath = os.path.join(os.getcwd(), 'data', sitename)
|
|
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'wb') as f:
|
|
pickle.dump(metadata, f)
|
|
|
|
return metadata
|
|
|
|
|
|
def merge_overlapping_images(metadata,inputs):
|
|
"""
|
|
When the area of interest is located at the boundary between 2 images, there will be overlap
|
|
between the 2 images and both will be downloaded from Google Earth Engine. This function
|
|
merges the 2 images, so that the area of interest is covered by only 1 image.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
metadata: dict
|
|
contains all the information about the satellite images that were downloaded
|
|
inputs: dict
|
|
dictionnary that contains the following fields:
|
|
'sitename': str
|
|
String containig the name of the site
|
|
'polygon': list
|
|
polygon containing the lon/lat coordinates to be extracted
|
|
longitudes in the first column and latitudes in the second column
|
|
'dates': list of str
|
|
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd'
|
|
e.g. ['1987-01-01', '2018-01-01']
|
|
'sat_list': list of str
|
|
list that contains the names of the satellite missions to include
|
|
e.g. ['L5', 'L7', 'L8', 'S2']
|
|
|
|
Returns:
|
|
-----------
|
|
metadata: dict
|
|
updated metadata with the information of the merged images
|
|
|
|
"""
|
|
|
|
# only for Sentinel-2 at this stage (could be implemented for Landsat as well)
|
|
sat = 'S2'
|
|
filepath = os.path.join(os.getcwd(), 'data', inputs['sitename'])
|
|
|
|
# find the images that are overlapping (same date in S2 filenames)
|
|
filenames = metadata[sat]['filenames']
|
|
filenames_copy = filenames.copy()
|
|
|
|
# loop through all the filenames and find the pairs of overlapping images (same date and time of acquisition)
|
|
pairs = []
|
|
for i,fn in enumerate(filenames):
|
|
filenames_copy[i] = []
|
|
# find duplicate
|
|
boolvec = [fn[:22] == _[:22] for _ in filenames_copy]
|
|
if np.any(boolvec):
|
|
idx_dup = np.where(boolvec)[0][0]
|
|
if len(filenames[i]) > len(filenames[idx_dup]):
|
|
pairs.append([idx_dup,i])
|
|
else:
|
|
pairs.append([i,idx_dup])
|
|
|
|
msg = 'Merging %d pairs of overlapping images...' % len(pairs)
|
|
print(msg)
|
|
|
|
# for each pair of images, merge them into one complete image
|
|
for i,pair in enumerate(pairs):
|
|
print(i+1, end='..')
|
|
|
|
fn_im = []
|
|
for index in range(len(pair)):
|
|
# read image
|
|
fn_im.append([os.path.join(filepath, 'S2', '10m', filenames[pair[index]]),
|
|
os.path.join(filepath, 'S2', '20m', filenames[pair[index]].replace('10m','20m')),
|
|
os.path.join(filepath, 'S2', '60m', filenames[pair[index]].replace('10m','60m'))])
|
|
im_ms, georef, cloud_mask, im_extra, imQA = SDS_preprocess.preprocess_single(fn_im[index], sat)
|
|
|
|
# in Sentinel2 images close to the edge of the image there are some artefacts,
|
|
# that are squares with constant pixel intensities. They need to be masked in the
|
|
# raster (GEOTIFF). It can be done using the image standard deviation, which
|
|
# indicates values close to 0 for the artefacts.
|
|
|
|
# First mask the 10m bands
|
|
if len(im_ms) > 0:
|
|
im_std = SDS_tools.image_std(im_ms[:,:,0],1)
|
|
im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
|
|
mask = morphology.dilation(im_binary, morphology.square(3))
|
|
for k in range(im_ms.shape[2]):
|
|
im_ms[mask,k] = np.nan
|
|
|
|
SDS_tools.mask_raster(fn_im[index][0], mask)
|
|
|
|
# Then mask the 20m band
|
|
im_std = SDS_tools.image_std(im_extra,1)
|
|
im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
|
|
mask = morphology.dilation(im_binary, morphology.square(3))
|
|
im_extra[mask] = np.nan
|
|
|
|
SDS_tools.mask_raster(fn_im[index][1], mask)
|
|
else:
|
|
continue
|
|
|
|
# make a figure for quality control
|
|
# plt.figure()
|
|
# plt.subplot(221)
|
|
# plt.imshow(im_ms[:,:,[2,1,0]])
|
|
# plt.title('imRGB')
|
|
# plt.subplot(222)
|
|
# plt.imshow(im20, cmap='gray')
|
|
# plt.title('im20')
|
|
# plt.subplot(223)
|
|
# plt.imshow(imQA, cmap='gray')
|
|
# plt.title('imQA')
|
|
# plt.subplot(224)
|
|
# plt.title(fn_im[index][0][-30:])
|
|
|
|
# merge masked 10m bands
|
|
fn_merged = os.path.join(os.getcwd(), 'merged.tif')
|
|
gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][0], fn_im[1][0]])
|
|
os.chmod(fn_im[0][0], 0o777)
|
|
os.remove(fn_im[0][0])
|
|
os.chmod(fn_im[1][0], 0o777)
|
|
os.remove(fn_im[1][0])
|
|
os.rename(fn_merged, fn_im[0][0])
|
|
|
|
# merge masked 20m band (SWIR band)
|
|
fn_merged = os.path.join(os.getcwd(), 'merged.tif')
|
|
gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][1], fn_im[1][1]])
|
|
os.chmod(fn_im[0][1], 0o777)
|
|
os.remove(fn_im[0][1])
|
|
os.chmod(fn_im[1][1], 0o777)
|
|
os.remove(fn_im[1][1])
|
|
os.rename(fn_merged, fn_im[0][1])
|
|
|
|
# merge QA band (60m band)
|
|
fn_merged = os.path.join(os.getcwd(), 'merged.tif')
|
|
gdal_merge.main(['', '-o', fn_merged, '-n', 'nan', fn_im[0][2], fn_im[1][2]])
|
|
os.chmod(fn_im[0][2], 0o777)
|
|
os.remove(fn_im[0][2])
|
|
os.chmod(fn_im[1][2], 0o777)
|
|
os.remove(fn_im[1][2])
|
|
os.rename(fn_merged, fn_im[0][2])
|
|
|
|
# update the metadata dict (delete all the duplicates)
|
|
metadata2 = copy.deepcopy(metadata)
|
|
filenames_copy = metadata2[sat]['filenames']
|
|
index_list = []
|
|
for i in range(len(filenames_copy)):
|
|
if filenames_copy[i].find('dup') == -1:
|
|
index_list.append(i)
|
|
for key in metadata2[sat].keys():
|
|
metadata2[sat][key] = [metadata2[sat][key][_] for _ in index_list]
|
|
|
|
return metadata2
|
|
|
|
def remove_cloudy_images(metadata,inputs,cloud_thresh):
|
|
"""
|
|
Deletes the .TIF file of images that have a cloud cover percentage that is above the cloud
|
|
threshold.
|
|
|
|
KV WRL 2018
|
|
|
|
Arguments:
|
|
-----------
|
|
metadata: dict
|
|
contains all the information about the satellite images that were downloaded
|
|
inputs: dict
|
|
dictionnary that contains the following fields:
|
|
'sitename': str
|
|
String containig the name of the site
|
|
'polygon': list
|
|
polygon containing the lon/lat coordinates to be extracted
|
|
longitudes in the first column and latitudes in the second column
|
|
'dates': list of str
|
|
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd'
|
|
e.g. ['1987-01-01', '2018-01-01']
|
|
'sat_list': list of str
|
|
list that contains the names of the satellite missions to include
|
|
e.g. ['L5', 'L7', 'L8', 'S2']
|
|
cloud_thresh: float
|
|
value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted
|
|
|
|
Returns:
|
|
-----------
|
|
metadata: dict
|
|
updated metadata with the information of the merged images
|
|
|
|
"""
|
|
|
|
# create a deep copy
|
|
metadata2 = copy.deepcopy(metadata)
|
|
|
|
for satname in metadata.keys():
|
|
|
|
# get the image filenames
|
|
filepath = SDS_tools.get_filepath(inputs,satname)
|
|
filenames = metadata[satname]['filenames']
|
|
|
|
# loop through images
|
|
idx_good = []
|
|
for i in range(len(filenames)):
|
|
# image filename
|
|
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
|
|
# preprocess image (cloud mask + pansharpening/downsampling)
|
|
im_ms, georef, cloud_mask, im_extra, imQA = SDS_preprocess.preprocess_single(fn, satname)
|
|
# calculate cloud cover
|
|
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
|
|
(cloud_mask.shape[0]*cloud_mask.shape[1]))
|
|
# skip image if cloud cover is above threshold
|
|
if cloud_cover > cloud_thresh or cloud_cover == 1:
|
|
# remove image files
|
|
if satname == 'L5':
|
|
os.chmod(fn, 0o777)
|
|
os.remove(fn)
|
|
else:
|
|
for j in range(len(fn)):
|
|
os.chmod(fn[j], 0o777)
|
|
os.remove(fn[j])
|
|
else:
|
|
idx_good.append(i)
|
|
|
|
msg = '\n%d cloudy images were removed for %s.' % (len(filenames)-len(idx_good), satname)
|
|
print(msg)
|
|
|
|
# update the metadata dict (delete all cloudy images)
|
|
for key in metadata2[satname].keys():
|
|
metadata2[satname][key] = [metadata2[satname][key][_] for _ in idx_good]
|
|
|
|
return metadata2 |