forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
383 lines
14 KiB
Python
383 lines
14 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
#==========================================================#
|
|
# Compare Narrabeen SDS with 3D quadbike surveys
|
|
#==========================================================#
|
|
|
|
# Initial settings
|
|
|
|
import os
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pdb
|
|
import ee
|
|
|
|
import matplotlib.dates as mdates
|
|
import matplotlib.cm as cm
|
|
from datetime import datetime, timedelta
|
|
import pickle
|
|
import pytz
|
|
import scipy.io as sio
|
|
import scipy.interpolate as interpolate
|
|
import statsmodels.api as sm
|
|
import skimage.measure as measure
|
|
|
|
# my functions
|
|
import functions.utils as utils
|
|
|
|
# some settings
|
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
|
plt.rcParams['axes.grid'] = True
|
|
plt.rcParams['figure.max_open_warning'] = 100
|
|
|
|
au_tz = pytz.timezone('Australia/Sydney')
|
|
|
|
# load quadbike dates and convert from datenum to datetime
|
|
filename = 'data\quadbike\survey_dates.mat'
|
|
filepath = os.path.join(os.getcwd(), filename)
|
|
dates_quad = sio.loadmat(filepath)['dates'] # matrix containing year, month, day
|
|
dates_quad = [datetime(dates_quad[i,0], dates_quad[i,1], dates_quad[i,2],
|
|
tzinfo=au_tz) for i in range(dates_quad.shape[0])]
|
|
|
|
# load timestamps from satellite images
|
|
satname = 'L8'
|
|
sitename = 'NARRA'
|
|
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
|
|
with open(os.path.join(filepath, sitename + '_output_new' + '.pkl'), 'rb') as f:
|
|
output = pickle.load(f)
|
|
|
|
dates_l8 = output['t']
|
|
# convert to AEST
|
|
dates_l8 = [_.astimezone(au_tz) for _ in dates_l8]
|
|
# remove duplicates
|
|
dates_l8_str = [_.strftime('%Y%m%d') for _ in dates_l8]
|
|
dupl = utils.duplicates_dict(dates_l8_str)
|
|
idx_remove = []
|
|
for k,v in dupl.items():
|
|
|
|
idx1 = v[0]
|
|
idx2 = v[1]
|
|
|
|
c1 = output['cloud_cover'][idx1]
|
|
c2 = output['cloud_cover'][idx2]
|
|
g1 = output['acc_georef'][idx1]
|
|
g2 = output['acc_georef'][idx2]
|
|
|
|
if c1 < c2 - 0.01:
|
|
idx_remove.append(idx2)
|
|
elif g1 < g2 - 0.1:
|
|
idx_remove.append(idx2)
|
|
else:
|
|
idx_remove.append(idx1)
|
|
idx_remove = sorted(idx_remove)
|
|
idx_all = np.linspace(0,70,71)
|
|
idx_keep = list(np.where(~np.isin(idx_all,idx_remove))[0])
|
|
output['t'] = [output['t'][k] for k in idx_keep]
|
|
output['shorelines'] = [output['shorelines'][k] for k in idx_keep]
|
|
output['cloud_cover'] = [output['cloud_cover'][k] for k in idx_keep]
|
|
output['acc_georef'] = [output['acc_georef'][k] for k in idx_keep]
|
|
# convert to AEST
|
|
dates_l8 = output['t']
|
|
dates_l8 = [_.astimezone(au_tz) for _ in dates_l8]
|
|
|
|
# load wave data (already AEST)
|
|
filename = 'data\wave\SydneyProcessed.mat'
|
|
filepath = os.path.join(os.getcwd(), filename)
|
|
wave_data = sio.loadmat(filepath)
|
|
idx = utils.find_indices(wave_data['dates'][:,0], lambda e: e >= dates_l8[0].year and e <= dates_l8[-1].year)
|
|
hsig = np.array([wave_data['Hsig'][i][0] for i in idx])
|
|
wdir = np.array([wave_data['Wdir'][i][0] for i in idx])
|
|
dates_wave = [datetime(wave_data['dates'][i,0], wave_data['dates'][i,1],
|
|
wave_data['dates'][i,2], wave_data['dates'][i,3],
|
|
wave_data['dates'][i,4], wave_data['dates'][i,5],
|
|
tzinfo=au_tz) for i in idx]
|
|
|
|
# load tide data (already AEST)
|
|
filename = 'SydTideData.mat'
|
|
filepath = os.path.join(os.getcwd(), 'data', 'tide', filename)
|
|
tide_data = sio.loadmat(filepath)
|
|
idx = utils.find_indices(tide_data['dates'][:,0], lambda e: e >= dates_l8[0].year and e <= dates_l8[-1].year)
|
|
tide = np.array([tide_data['tide'][i][0] for i in idx])
|
|
dates_tide = [datetime(tide_data['dates'][i,0], tide_data['dates'][i,1],
|
|
tide_data['dates'][i,2], tide_data['dates'][i,3],
|
|
tide_data['dates'][i,4], tide_data['dates'][i,5],
|
|
tzinfo=au_tz) for i in idx]
|
|
|
|
#%% make a plot of all the dates with wave data
|
|
orange = [255/255,140/255,0]
|
|
blue = [0,191/255,255/255]
|
|
f = plt.figure()
|
|
months = mdates.MonthLocator()
|
|
month_fmt = mdates.DateFormatter('%b %Y')
|
|
days = mdates.DayLocator()
|
|
years = [2013,2014,2015,2016]
|
|
for k in range(len(years)):
|
|
sel_year = years[k]
|
|
ax = plt.subplot(4,1,k+1)
|
|
idx_year = utils.find_indices(dates_wave, lambda e : e.year >= sel_year and e.year <= sel_year)
|
|
plt.plot([dates_wave[i] for i in idx_year], [hsig[i] for i in idx_year], 'k-', linewidth=0.5)
|
|
hsigmax = np.nanmax([hsig[i] for i in idx_year])
|
|
cbool = True
|
|
for j in range(len(dates_quad)):
|
|
if dates_quad[j].year == sel_year:
|
|
if cbool:
|
|
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange, label='survey')
|
|
cbool = False
|
|
else:
|
|
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange)
|
|
cbool = True
|
|
for j in range(len(dates_l8)):
|
|
if dates_l8[j].year == sel_year:
|
|
if cbool:
|
|
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue, label='landsat8')
|
|
cbool = False
|
|
else:
|
|
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue)
|
|
if k == 3:
|
|
plt.legend()
|
|
plt.xlim((datetime(sel_year,1,1), datetime(sel_year,12,31, tzinfo=au_tz)))
|
|
plt.ylim((0, hsigmax))
|
|
plt.ylabel('Hs [m]')
|
|
ax.xaxis.set_major_locator = months
|
|
ax.xaxis.set_major_formatter(month_fmt)
|
|
f.subplots_adjust(hspace=0.2)
|
|
plt.draw()
|
|
|
|
#%% calculate difference between dates (quad and sat)
|
|
diff_days = [ [(x - _).days for _ in dates_quad] for x in dates_l8]
|
|
max_diff = 14
|
|
idx_closest = [utils.find_indices(_, lambda e: abs(e) <= max_diff) for _ in diff_days]
|
|
# store in dates_diff dictionnary
|
|
dates_diff = []
|
|
cloud_cover = []
|
|
for i in range(len(idx_closest)):
|
|
if not idx_closest[i]:
|
|
continue
|
|
elif len(idx_closest[i]) > 1:
|
|
idx_best = np.argmin(np.abs([diff_days[i][_] for _ in idx_closest[i]]))
|
|
dates_temp = [dates_quad[_] for _ in idx_closest[i]]
|
|
days_temp = [diff_days[i][_] for _ in idx_closest[i]]
|
|
dates_diff.append({"date sat": dates_l8[i],
|
|
"date quad": dates_temp[idx_best],
|
|
"days diff": days_temp[idx_best]})
|
|
else:
|
|
dates_diff.append({"date sat": dates_l8[i],
|
|
"date quad": dates_quad[idx_closest[i][0]],
|
|
"days diff": diff_days[i][idx_closest[i][0]]
|
|
})
|
|
# store cloud data
|
|
cloud_cover.append(output['cloud_cover'][i])
|
|
|
|
# store wave data
|
|
wave_hsig = []
|
|
for i in range(len(dates_diff)):
|
|
wave_hsig.append(hsig[np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).total_seconds() for _ in dates_wave])))])
|
|
|
|
# make a plot
|
|
plt.figure()
|
|
counter = 0
|
|
for i in range(len(dates_diff)):
|
|
counter = counter + 1
|
|
if dates_diff[i]['date quad'] > dates_diff[i]['date sat']:
|
|
date_min = dates_diff[i]['date sat']
|
|
date_max = dates_diff[i]['date quad']
|
|
color1 = orange
|
|
color2 = blue
|
|
else:
|
|
date_min = dates_diff[i]['date quad']
|
|
date_max = dates_diff[i]['date sat']
|
|
color1 = blue
|
|
color2 = orange
|
|
idx_t = utils.find_indices(dates_wave, lambda e : e >= date_min and e <= date_max)
|
|
hsigmax = np.nanmax([hsig[i] for i in idx_t])
|
|
hsigmin = np.nanmin([hsig[i] for i in idx_t])
|
|
if counter > 9:
|
|
counter = 1
|
|
plt.figure()
|
|
ax = plt.subplot(3,3,counter)
|
|
plt.plot([dates_wave[i] for i in idx_t], [hsig[i] for i in idx_t], 'k-', linewidth=1.5)
|
|
plt.plot([date_min, date_min], [0, 4.5], color=color2, label='survey')
|
|
plt.plot([date_max, date_max], [0, 4.5], color=color1, label='landsat8')
|
|
plt.ylabel('Hs [m]')
|
|
ax.xaxis.set_major_locator(mdates.DayLocator(tz=au_tz))
|
|
ax.xaxis.set_minor_locator(mdates.HourLocator(tz=au_tz))
|
|
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d'))
|
|
ax.xaxis.set_minor_locator(months)
|
|
plt.title(dates_diff[i]['date sat'].strftime('%b %Y') + ' (' + str(abs(dates_diff[i]['days diff'])) + ' days)')
|
|
plt.draw()
|
|
plt.gcf().subplots_adjust(hspace=0.5)
|
|
|
|
# mean day difference
|
|
np.mean([ np.abs(_['days diff']) for _ in dates_diff])
|
|
|
|
#%% Compare shorelines in elevation
|
|
|
|
dist_buffer = 50 # buffer of points selected for interpolation
|
|
|
|
# load quadbike .mat files
|
|
foldername = 'data\quadbike\surveys3D'
|
|
folderpath = os.path.join(os.getcwd(), foldername)
|
|
filenames = os.listdir(folderpath)
|
|
|
|
# get the satellite shorelines
|
|
sl = output['shorelines']
|
|
|
|
# get dates from filenames
|
|
dates_quad = [datetime(int(_[6:10]), int(_[11:13]), int(_[14:16]), tzinfo= au_tz) for _ in filenames]
|
|
|
|
zav = []
|
|
ztide = []
|
|
sl_gt = []
|
|
for i in range(len(dates_diff)):
|
|
|
|
sl_smooth = sl[i]
|
|
|
|
# select closest 3D survey and load .mat file
|
|
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).days for _ in dates_quad])))
|
|
survey3d = sio.loadmat(os.path.join(folderpath, filenames[idx_closest]))
|
|
# reshape to a vector
|
|
xs = survey3d['x'].reshape(survey3d['x'].shape[0] * survey3d['x'].shape[1])
|
|
ys = survey3d['y'].reshape(survey3d['y'].shape[0] * survey3d['y'].shape[1])
|
|
zs = survey3d['z'].reshape(survey3d['z'].shape[0] * survey3d['z'].shape[1])
|
|
# remove nan values
|
|
idx_nan = np.isnan(zs)
|
|
xs = xs[~idx_nan]
|
|
ys = ys[~idx_nan]
|
|
zs = zs[~idx_nan]
|
|
|
|
# find water level at the time the image was acquired
|
|
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).total_seconds() for _ in dates_tide])))
|
|
tide_level = tide[idx_closest]
|
|
ztide.append(tide_level)
|
|
|
|
# find contour corresponding to the water level on 3D surface (if below minimum, add 0.05m increments)
|
|
if tide_level < np.nanmin(survey3d['z']):
|
|
tide_level = np.nanmin(survey3d['z'])
|
|
sl_tide = measure.find_contours(survey3d['z'], tide_level)
|
|
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
|
|
count = 0
|
|
while len(sl_tide) < 900:
|
|
count = count + 1
|
|
tide_level = tide_level + 0.05*count
|
|
sl_tide = measure.find_contours(survey3d['z'], tide_level)
|
|
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
|
|
print('added ' + str(0.05*count) + ' cm - contour with ' + str(len(sl_tide)) + ' points')
|
|
else:
|
|
sl_tide = measure.find_contours(survey3d['z'], tide_level)
|
|
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
|
|
# remove nans
|
|
if np.any(np.isnan(sl_tide)):
|
|
index_nan = np.where(np.isnan(sl_tide))[0]
|
|
sl_tide = np.delete(sl_tide, index_nan, axis=0)
|
|
# get x,y coordinates
|
|
xtide = [survey3d['x'][int(np.round(sl_tide[m,0])), int(np.round(sl_tide[m,1]))] for m in range(sl_tide.shape[0])]
|
|
ytide = [survey3d['y'][int(np.round(sl_tide[m,0])), int(np.round(sl_tide[m,1]))] for m in range(sl_tide.shape[0])]
|
|
sl_gt.append(np.transpose(np.array([np.array(xtide), np.array(ytide)])))
|
|
# interpolate SDS on 3D surface to get elevation (point by point)
|
|
zq = []
|
|
for j in range(sl_smooth.shape[0]):
|
|
xq = sl_smooth[j,0]
|
|
yq = sl_smooth[j,1]
|
|
dist_q = np.linalg.norm(np.transpose(np.array([[xq - _ for _ in xs],[yq - _ for _ in ys]])), axis=1)
|
|
idx_buffer = dist_q <= dist_buffer
|
|
if sum(idx_buffer) > 0:
|
|
tck = interpolate.bisplrep(xs[idx_buffer], ys[idx_buffer], zs[idx_buffer])
|
|
zq.append(interpolate.bisplev(xq, yq, tck))
|
|
|
|
zq = np.array(zq)
|
|
plt.figure()
|
|
plt.hist(zq, bins=100)
|
|
plt.draw()
|
|
# plt.figure()
|
|
# plt.axis('equal')
|
|
# plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
|
|
# label='quad data')
|
|
# plt.plot(xs[idx_buffer], ys[idx_buffer], 'ko')
|
|
# plt.plot(xq,yq,'ro')
|
|
# plt.draw()
|
|
|
|
# store the alongshore median elevation
|
|
zav.append(np.median(utils.reject_outliers(zq, m=2)))
|
|
|
|
# make plot
|
|
red = [255/255, 0, 0]
|
|
gray = [0.75, 0.75, 0.75]
|
|
plt.figure()
|
|
plt.subplot(121)
|
|
plt.axis('equal')
|
|
plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
|
|
label='3D survey')
|
|
plt.plot(xtide, ytide, '--', color=gray, linewidth=2.5, label='tide level contour')
|
|
plt.plot(sl_smooth[:,0], sl_smooth[:,1], '-', color=red, linewidth=2.5, label='SDS')
|
|
# plt.plot(sl[i][idx_beach,0], sl[i][idx_beach,1], 'w-', linewidth=2)
|
|
plt.xlabel('Eastings [m]')
|
|
plt.ylabel('Northings [m]')
|
|
plt.title('Shoreline comparison')
|
|
plt.colorbar(label='mAHD')
|
|
plt.legend()
|
|
plt.ylim((6266100, 6267000))
|
|
plt.subplot(122)
|
|
plt.plot(np.linspace(0,1,len(zq)), zq, 'ko-', markersize=5)
|
|
plt.plot([0, 1], [zav[i], zav[i]], 'r-', label='median')
|
|
plt.plot([0, 1], [ztide[i], ztide[i]], 'g--', label = 'measured tide')
|
|
plt.xlabel('Northings [m]')
|
|
plt.ylabel('Elevation [mAHD]')
|
|
plt.title('Alongshore SDS elevation')
|
|
plt.legend()
|
|
mng = plt.get_current_fig_manager()
|
|
mng.window.showMaximized()
|
|
plt.tight_layout()
|
|
plt.draw()
|
|
|
|
print(i)
|
|
|
|
#%% Calculate some error statistics
|
|
zav = np.array(zav)
|
|
ztide = np.array(ztide)
|
|
|
|
f = plt.figure()
|
|
plt.subplot(3,1,1)
|
|
plt.bar(np.linspace(1,len(zav),len(zav)), zav-ztide)
|
|
plt.ylabel('Error in z [m]')
|
|
plt.title('Elevation error')
|
|
plt.xticks([])
|
|
plt.draw()
|
|
|
|
plt.subplot(3,1,2)
|
|
plt.bar(np.linspace(1,len(zav),len(zav)), wave_hsig, color=orange)
|
|
plt.ylabel('Hsig [m]')
|
|
plt.xticks([])
|
|
plt.draw()
|
|
|
|
plt.subplot(3,1,3)
|
|
plt.bar(np.linspace(1,len(zav),len(zav)), np.array(cloud_cover)*100, color='g')
|
|
plt.ylabel('Cloud cover %')
|
|
plt.xlabel('comparison #')
|
|
plt.grid(False)
|
|
plt.grid(axis='y')
|
|
f.subplots_adjust(hspace=0)
|
|
plt.draw()
|
|
|
|
np.sqrt(np.mean((zav - ztide)**2))
|
|
|
|
|
|
|
|
#%% plot to show LOWESS smoothing
|
|
#i = 0
|
|
#idx_beach = [np.min(np.linalg.norm(sl[i][k,:] - narrabeach, axis=1)) < dist_thresh for k in range(sl[i].shape[0])]
|
|
#x = sl[i][idx_beach,0]
|
|
#y = sl[i][idx_beach,1]
|
|
#sl_smooth = lowess(x,y, frac=1./10, it = 10)
|
|
#
|
|
#plt.figure()
|
|
#plt.axis('equal')
|
|
#plt.scatter
|
|
#plt.plot(x,y,'bo', linewidth=2, label='original SDS')
|
|
#plt.plot(sl_smooth[:,1], sl_smooth[:,0], 'ro', linewidth=2, label='smoothed SDS')
|
|
#plt.legend()
|
|
#plt.xlabel('Eastings [m]')
|
|
#plt.ylabel('Northings [m]')
|
|
#plt.title('Local weighted scatterplot smoothing (LOWESS)')
|
|
#plt.draw()
|
|
|