You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
geetools_VH/old/oldcodes/sds_extract_test.py

261 lines
8.3 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Thu Mar 1 14:32:08 2018
@author: z5030440
Main code to extract shorelines from Landsat imagery
"""
# Preamble
import ee
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import pandas as pd
from datetime import datetime
import pickle
import pdb
import pytz
from pylab import ginput
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.morphology as morphology
import skimage.measure as measure
# my functions
import functions.utils as utils
import functions.sds as sds
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
ee.Initialize()
#%% Select images
# parameters
plot_bool = False # if you want the plots
prob_high = 99.9 # upper probability to clip and rescale pixel intensity
min_contour_points = 100 # minimum number of points contained in each water line
output_epsg = 28356 # GDA94 / MGA Zone 56
cloud_threshold = 0.7
# select collection
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
# location (Narrabeen-Collaroy beach)
rect_narra = [[[151.3473129272461,-33.69035274454718],
[151.2820816040039,-33.68206818063878],
[151.27281188964844,-33.74775138989556],
[151.3425064086914,-33.75231878701767],
[151.3473129272461,-33.69035274454718]]];
with open('data/narra_beach.pkl', 'rb') as f:
pts_beach = pickle.load(f)
with open('data/idx_nogt.pkl', 'rb') as f:
idx_nogt = pickle.load(f)
idx_nogt = np.array(idx_nogt)
#rect_narra = [[[151.301454, -33.700754],
# [151.311453, -33.702075],
# [151.307237, -33.739761],
# [151.294220, -33.736329],
# [151.301454, -33.700754]]];
# Dates
start_date = '2016-01-01'
end_date = '2016-12-31'
# filter by location
flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra))#.filterDate(start_date, end_date)
n_img = flt_col.size().getInfo()
print('Number of images covering Narrabeen:', n_img)
im_all = flt_col.getInfo().get('features')
#%% Extract shorelines
metadata = {'timestamp':[],
'date_acquired':[],
'cloud_cover':[],
'geom_rmse_model':[],
'gcp_model':[],
'quality':[],
'sun_azimuth':[],
'sun_elevation':[]}
skipped_images = np.zeros((n_img,1)).astype(bool)
output_wl = []
# loop through all images
for i in range(n_img):
if np.isin(i, idx_nogt):
continue
# find each image in ee database
im = ee.Image(im_all[i].get('id'))
# load image as np.array
im_pan, im_ms, im_cloud, crs, meta = sds.read_eeimage(im, rect_narra, plot_bool)
# if clouds -> skip the image
if sum(sum(im_cloud.astype(int)))/(im_cloud.shape[0]*im_cloud.shape[1]) > cloud_threshold:
skipped_images[i] = True
continue
# rescale intensities
im_ms = sds.rescale_image_intensity(im_ms, im_cloud, prob_high, plot_bool)
im_pan = sds.rescale_image_intensity(im_pan, im_cloud, prob_high, plot_bool)
# pansharpen rgb image
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, im_cloud, plot_bool)
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
# calculate NDWI
im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], im_cloud, plot_bool)
# edge detection
wl_pix = sds.find_wl_contours(im_ndwi, im_cloud, min_contour_points, plot_bool)
# convert from pixels to world coordinates
wl_coords = sds.convert_pix2world(wl_pix, crs['crs_15m'])
# convert to output epsg spatial reference
wl = sds.convert_epsg(wl_coords, crs['epsg_code'], output_epsg)
# find contour closest to narrabeen beach
sum_dist = np.zeros(len(wl))
for k,contour in enumerate(wl):
min_dist = np.zeros(len(pts_beach))
for j,pt in enumerate(pts_beach):
min_dist[j] = np.min(np.linalg.norm(contour - pt, axis=1))
sum_dist[k] = np.sum(min_dist)/len(min_dist)
try:
wl_beach = wl[np.argmin(sum_dist)]
# plt.figure()
# plt.axis('equal')
# plt.plot(pts_beach[:,0], pts_beach[:,1], 'ko')
# plt.plot(wl_beach[:,0], wl_beach[:,1], 'r')
# plt.show()
except:
wl_beach = []
plt.figure()
plt.imshow(im_ms_ps[:,:,[2,1,0]])
for k,contour in enumerate(wl_pix): plt.plot(contour[:, 1], contour[:, 0], linewidth=2)
if len(wl_beach) > 0:
plt.plot(wl_pix[np.argmin(sum_dist)][:,1], wl_pix[np.argmin(sum_dist)][:,0], linewidth=3, color='w')
plt.axis('image')
plt.title('im ' + str(i) + ' : ' + datetime.strftime(datetime
.fromtimestamp(meta['timestamp']/1000, tz=pytz.utc)
.astimezone(pytz.timezone('Australia/Sydney')), '%Y-%m-%d %H:%M:%S %Z%z'))
plt.show()
# manually validate shoreline detection
input_pt = np.array(ginput(1))
if input_pt[0,1] > 300:
skipped_images[i] = True
continue
# store metadata of each image in dict
metadata['timestamp'].append(meta['timestamp'])
metadata['date_acquired'].append(meta['date_acquired'])
metadata['cloud_cover'].append(sum(sum(im_cloud.astype(int)))/(im_cloud.shape[0]*im_cloud.shape[1]))
metadata['geom_rmse_model'].append(meta['geom_rmse_model'])
metadata['gcp_model'].append(meta['gcp_model'])
metadata['quality'].append(meta['quality'])
metadata['sun_azimuth'].append(meta['sun_azimuth'])
metadata['sun_elevation'].append(meta['sun_elevation'])
# store water lines
output_wl.append(wl_beach)
print(i)
# generate datetimes
#fmt = '%Y-%m-%d %H:%M:%S %Z%z'
#au_tz = pytz.timezone('Australia/Sydney')
dt = [];
t = metadata['timestamp']
for k in range(len(t)): dt.append(datetime.fromtimestamp(t[k]/1000, tz=pytz.utc))
# save outputs
data = metadata.copy()
data.update({'dt':dt})
data.update({'contours':output_wl})
with open('data_gt15d_32_56.pkl', 'wb') as f:
pickle.dump(data, f)
#%% Load data
##with open('data_2016.pkl', 'rb') as f:
## data = pickle.load(f)
#
#
## load backgroud image
#i = 0
#im = ee.Image(im_all[i].get('id'))
#im_pan, im_ms, im_cloud, crs, meta = sds.read_eeimage(im, rect_narra, plot_bool)
#im_ms = sds.rescale_image_intensity(im_ms, im_cloud, prob_high, plot_bool)
#im_pan = sds.rescale_image_intensity(im_pan, im_cloud, prob_high, plot_bool)
#im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, im_cloud, plot_bool)
#
#plt.figure()
#plt.imshow(im_ms_ps[:,:,[2,1,0]])
#plt.axis('image')
#plt.title('2016 shorelines')
#
#n = len(data['cloud_cover'])
#idx_best = []
## remove overlapping images, based on cloud cover
#for i in range(n):
# date_im = data['date_acquired'][i]
# idx = np.isin(data['date_acquired'], date_im)
# best = np.where(idx)[0][np.argmin(np.array(data['cloud_cover'])[idx])]
# if ~np.isin(best, idx_best):
# idx_best.append(best)
#
#point_narra = np.array([342500, 6266990])
#plt.figure()
#plt.axis('equal')
#plt.grid()
#cmap = cm.get_cmap('jet')
#colours = cmap(np.linspace(0, 1, num=len(idx_best)))
#for i, idx in enumerate(idx_best):
# for j in range(len(data['contours'][i])):
# if np.any(np.linalg.norm(data['contours'][i][j][:,[0,1]] - point_narra, axis=1) < 200):
# plt.plot(data['contours'][i][j][:,0], data['contours'][i][j][:,1],
# label=str(data['date_acquired'][i]),
# linewidth=2, color=colours[i,:])
#
#plt.legend()
#plt.show()
#
#pts_narra = sds.convert_epsg(pts_narra, output_epsg, 4326)
#
##kml.newlinestring(name="beach",
## coords = [(_[0], _[1]) for _ in pts_narra])
##kml.save("narra.kml")
#%%
#with open('data_gt15d_0_31.pkl', 'rb') as f:
# data1 = pickle.load(f)
#with open('data_gt15d_32_56.pkl', 'rb') as f:
# data2 = pickle.load(f)
#with open('data_gt15d_99_193.pkl', 'rb') as f:
# data3 = pickle.load(f)
#
#data = []
#data = data1.copy()
#for k,cat in enumerate(data.keys()):
# for j in range(len(data2[cat])):
# data[cat].append(data2[cat][j])
# for j in range(len(data3[cat])):
# data[cat].append(data3[cat][j])
#
#
#with open('data_gt_l8.pkl', 'wb') as f:
# pickle.dump(data, f)