You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
geetools_VH/old/oldcodes/classify_sand_test.py

477 lines
15 KiB
Python

# -*- coding: utf-8 -*-
#==========================================================#
# Extract shorelines from Landsat images
#==========================================================#
# Initial settings
import ee
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import pandas as pd
from datetime import datetime
import pickle
import pdb
import pytz
from pylab import ginput
from osgeo import gdal
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.morphology as morphology
import skimage.measure as measure
import skimage.color as color
import skimage.feature as feature
# machine learning modules
from sklearn.cluster import KMeans
# my modules
import functions.utils as utils
import functions.sds as sds
# some settings
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
plt.rcParams['axes.grid'] = False
plt.rcParams['figure.max_open_warning'] = 100
ee.Initialize()
# parameters
cloud_thresh = 0.5 # threshold for cloud cover
plot_bool = False # if you want the plots
prob_high = 99.9 # upper probability to clip and rescale pixel intensity
min_contour_points = 100# minimum number of points contained in each water line
output_epsg = 28356 # GDA94 / MGA Zone 56
buffer_size = 10 # radius (in pixels) of disk for buffer (pixel classification)
min_beach_size = 50 # number of pixels in a beach (pixel classification)
# select collection
satname = 'L8'
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA') # Landsat 8 Tier 1 TOA
# location (Narrabeen-Collaroy beach)
polygon = [[[151.3473129272461,-33.69035274454718],
[151.2820816040039,-33.68206818063878],
[151.27281188964844,-33.74775138989556],
[151.3425064086914,-33.75231878701767],
[151.3473129272461,-33.69035274454718]]];
# dates
start_date = '2013-01-01'
end_date = '2018-12-31'
# filter by location and date
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(start_date, end_date)
n_img = flt_col.size().getInfo()
print('Number of images covering the polygon:', n_img)
im_all = flt_col.getInfo().get('features')
i = 0 # first image
# find image in ee database
im = ee.Image(im_all[i].get('id'))
# load image as np.array
im_pan, im_ms, im_cloud, crs, meta = sds.read_eeimage(im, polygon, satname, plot_bool)
# rescale intensities
im_ms = sds.rescale_image_intensity(im_ms, im_cloud, prob_high, plot_bool)
im_pan = sds.rescale_image_intensity(im_pan, im_cloud, prob_high, plot_bool)
# pansharpen rgb image
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, im_cloud, plot_bool)
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
# calculate NDWI
im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], im_cloud, plot_bool)
# edge detection
wl_pix = sds.find_wl_contours(im_ndwi, im_cloud, min_contour_points, plot_bool)
# convert from pixels to world coordinates
wl_coords = sds.convert_pix2world(wl_pix, crs['crs_15m'])
# convert to output epsg spatial reference
wl = sds.convert_epsg(wl_coords, crs['epsg_code'], output_epsg)
# classify sand pixels
im_sand = sds.classify_sand_unsupervised(im_ms_ps, im_pan, im_cloud, wl_pix, buffer_size, min_beach_size, plot_bool)
#pt_in = np.array(ginput(n=1, timeout=1000))
#if pt_in[0][0] < im_ms_ps.shape[1]/2:
win = np.ones((3,3))
im_features = np.zeros((sum(sum(im_sand)), 20))
im_features[:,[0,1,2,3,4]] = im_ms_ps[im_sand,:] # B G R NIR SWIR
im_features[:,5] = im_pan[im_sand] # Pan
im_features[:,6] = im_ndwi[im_sand] # NDWI
im_features[:,7] = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,2], im_cloud, False)[im_sand] # NDVI
im_features[:,8] = sds.nd_index(im_ms_ps[:,:,0], im_ms_ps[:,:,2], im_cloud, False)[im_sand] # ND Blue - Red
for i in range(9):
im_features[:,i+9] = ndimage.generic_filter(im_features[:,i], np.std, footprint = win)
im_ms_ps[im_sand,:]
im_grey = color.rgb2grey(im_ms_ps[:,:,[2,1,0]])
plt.figure()
plt.imshow(im_grey, cmap='gray')
plt.draw()
counts, bins = np.histogram(im_grey[~im_cloud], bins=255)
im_grey_d = np.digitize(im_grey, bins=bins) - 1
from scipy import ndimage
varianceMatrix1 = ndimage.generic_filter(im_grey_d, np.max, footprint = np.ones((3,3)))
varianceMatrix2 = ndimage.generic_filter(im_grey_d, np.min, footprint = np.ones((3,3)))
varianceMatrix = varianceMatrix1 - varianceMatrix2
im_grey = color.rgb2grey(im_ms_ps[:,:,[2,1,0]])
plt.figure()
plt.imshow(varianceMatrix, cmap='gray')
plt.draw()
#%%
data = gdal.Open('l8_test.tif', gdal.GA_ReadOnly)
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
im = np.stack(bands, 2)
im_test = im[:,:,3]
plt.figure()
plt.imshow(im_test, cmap='gray')
plt.axis('image')
plt.draw()
im_stats = np.zeros((im_test.shape[0], im_test.shape[1], 6))
winsize = 5
prop_names = ('contrast', 'dissimilarity', 'homogeneity', 'energy', 'correlation', 'ASM')
for i in range(im_test.shape[0]):
print(int(np.round(100*i/im_test.shape[0])))
for j in range(im_test.shape[1]):
#windows needs to fit completely in image
if i <2 or j <2:
continue
if i > (im_test.shape[0] - 3) or j > (im_test.shape[1] - 3):
continue
#Calculate GLCM on a 3x3 window
glcm_window = im_test[i-2: i+3, j-2 : j+3]
glcm = feature.greycomatrix(glcm_window, [1], [0], symmetric = True, normed = True )
#Calculate contrast and replace center pixel
for k in range(6): im_stats[i,j,k] = feature.greycoprops(glcm, prop_names[k])
plt.figure()
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(im_stats[:,:,i], cmap='jet')
plt.axis('image')
plt.title(prop_names[i])
plt.draw()
pixel_loc = [200, 200]
im_stats[pixel_loc[0], pixel_loc[1], 3]
#%%
for i in range(im_grey_d.shape[0]):
print(int(np.round(100*i/im_grey_d.shape[0])))
for j in range(im_grey_d.shape[1]):
#windows needs to fit completely in image
if i <1 or j <1:
continue
if i > (im_grey_d.shape[0] - 1) or j > (im_grey_d.shape[0] - 1):
continue
#Calculate GLCM on a 3x3 window
glcm_window = im_grey_d[i-1: i+1, j-1 : j+1]
glcm = feature.greycomatrix(glcm_window, [1,2], [0], levels=256, symmetric = True, normed = True )
#Calculate contrast and replace center pixel
im_stats[i,j,0] = feature.greycoprops(glcm, 'contrast')
im_stats[i,j,1] = feature.greycoprops(glcm, 'dissimilarity')
im_stats[i,j,2] = feature.greycoprops(glcm, 'homogeneity')
im_stats[i,j,3] = feature.greycoprops(glcm, 'energy')
im_stats[i,j,4] = feature.greycoprops(glcm, 'correlation')
im_stats[i,j,5] = feature.greycoprops(glcm, 'ASM')
plt.figure()
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(im_stats[:,:,i], cmap='jet')
plt.axis('image')
plt.draw()
#%%
from multiprocessing import Pool
from itertools import product
N = 10000000
pool = Pool() #defaults to number of available CPU's
a = np.ones((N))
b = np.ones((N))*2
out = np.zeros((N))
t = time.time()
for i in range(len(a)):
out[i] = a[i]*b[i]
elapsed = time.time() - t
print(elapsed)
def fun(a,b):
return a*b
chunksize = 20 #this may take some guessing ... take a look at the docs to decide
for ind, res in enumerate(pool.map(fun, range(N)), chunksize):
output.flat[ind] = res
#%%
import gdal, osr
import numpy as np
from scipy.interpolate import RectBivariateSpline
from numpy.lib.stride_tricks import as_strided as ast
import dask.array as da
from joblib import Parallel, delayed, cpu_count
import os
from skimage.feature import greycomatrix, greycoprops
def im_resize(im,Nx,Ny):
'''
resize array by bivariate spline interpolation
'''
ny, nx = np.shape(im)
xx = np.linspace(0,nx,Nx)
yy = np.linspace(0,ny,Ny)
try:
im = da.from_array(im, chunks=1000) #dask implementation
except:
pass
newKernel = RectBivariateSpline(np.r_[:ny],np.r_[:nx],im)
return newKernel(yy,xx)
def p_me(Z, win):
'''
loop to calculate greycoprops
'''
try:
glcm = greycomatrix(Z, [5], [0], 256, symmetric=True, normed=True)
cont = greycoprops(glcm, 'contrast')
diss = greycoprops(glcm, 'dissimilarity')
homo = greycoprops(glcm, 'homogeneity')
eng = greycoprops(glcm, 'energy')
corr = greycoprops(glcm, 'correlation')
ASM = greycoprops(glcm, 'ASM')
return (cont, diss, homo, eng, corr, ASM)
except:
return (0,0,0,0,0,0)
def norm_shape(shap):
'''
Normalize numpy array shapes so they're always expressed as a tuple,
even for one-dimensional shapes.
'''
try:
i = int(shap)
return (i,)
except TypeError:
# shape was not a number
pass
try:
t = tuple(shap)
return t
except TypeError:
# shape was not iterable
pass
raise TypeError('shape must be an int, or a tuple of ints')
def sliding_window(a, ws, ss = None, flatten = True):
'''
Source: http://www.johnvinyard.com/blog/?p=268#more-268
Parameters:
a - an n-dimensional numpy array
ws - an int (a is 1D) or tuple (a is 2D or greater) representing the size
of each dimension of the window
ss - an int (a is 1D) or tuple (a is 2D or greater) representing the
amount to slide the window in each dimension. If not specified, it
defaults to ws.
flatten - if True, all slices are flattened, otherwise, there is an
extra dimension for each dimension of the input.
Returns
an array containing each n-dimensional window from a
'''
if None is ss:
# ss was not provided. the windows will not overlap in any direction.
ss = ws
ws = norm_shape(ws)
ss = norm_shape(ss)
# convert ws, ss, and a.shape to numpy arrays
ws = np.array(ws)
ss = np.array(ss)
shap = np.array(a.shape)
# ensure that ws, ss, and a.shape all have the same number of dimensions
ls = [len(shap),len(ws),len(ss)]
if 1 != len(set(ls)):
raise ValueError(\
'a.shape, ws and ss must all have the same length. They were %s' % str(ls))
# ensure that ws is smaller than a in every dimension
if np.any(ws > shap):
raise ValueError(\
'ws cannot be larger than a in any dimension.\
a.shape was %s and ws was %s' % (str(a.shape),str(ws)))
# how many slices will there be in each dimension?
newshape = norm_shape(((shap - ws) // ss) + 1)
# the shape of the strided array will be the number of slices in each dimension
# plus the shape of the window (tuple addition)
newshape += norm_shape(ws)
# the strides tuple will be the array's strides multiplied by step size, plus
# the array's strides (tuple addition)
newstrides = norm_shape(np.array(a.strides) * ss) + a.strides
a = ast(a,shape = newshape,strides = newstrides)
if not flatten:
return a
# Collapse strided so that it has one more dimension than the window. I.e.,
# the new array is a flat list of slices.
meat = len(ws) if ws.shape else 0
firstdim = (np.product(newshape[:-meat]),) if ws.shape else ()
dim = firstdim + (newshape[-meat:])
# remove any dimensions with size 1
dim = filter(lambda i : i != 1,dim)
return a.reshape(dim), newshape
#Stuff to change
win = 3
meter = str(win/4)
merge = im_grey_d
Z,ind = sliding_window(merge,(win,win),(1,1))
Ny, Nx = np.shape(merge)
w = Parallel(n_jobs = cpu_count(), verbose=0)(delayed(p_me)(Z[k]) for k in xrange(len(Z)))
cont = [a[0] for a in w]
diss = [a[1] for a in w]
homo = [a[2] for a in w]
eng = [a[3] for a in w]
corr = [a[4] for a in w]
ASM = [a[5] for a in w]
#Reshape to match number of windows
plt_cont = np.reshape(cont , ( ind[0], ind[1] ) )
plt_diss = np.reshape(diss , ( ind[0], ind[1] ) )
plt_homo = np.reshape(homo , ( ind[0], ind[1] ) )
plt_eng = np.reshape(eng , ( ind[0], ind[1] ) )
plt_corr = np.reshape(corr , ( ind[0], ind[1] ) )
plt_ASM = np.reshape(ASM , ( ind[0], ind[1] ) )
del cont, diss, homo, eng, corr, ASM
#Resize Images to receive texture and define filenames
contrast = im_resize(plt_cont,Nx,Ny)
contrast[merge==0]=np.nan
dissimilarity = im_resize(plt_diss,Nx,Ny)
dissimilarity[merge==0]=np.nan
homogeneity = im_resize(plt_homo,Nx,Ny)
homogeneity[merge==0]=np.nan
energy = im_resize(plt_eng,Nx,Ny)
energy[merge==0]=np.nan
correlation = im_resize(plt_corr,Nx,Ny)
correlation[merge==0]=np.nan
ASM = im_resize(plt_ASM,Nx,Ny)
ASM[merge==0]=np.nan
#%%
plt.figure()
plt.imshow(im_ms_ps[:,:,[2,1,0]])
for i,contour in enumerate(wl_pix): plt.plot(contour[:, 1], contour[:, 0], linewidth=2)
plt.axis('image')
plt.title('Detected water lines')
plt.show()
vec = im_ms_ps.reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1], im_ms_ps.shape[2])
vec_pan = im_pan.reshape(im_pan.shape[0]*im_pan.shape[1])
features = np.zeros((len(vec), 5))
features[:,[0,1,2,3]] = vec[:,[0,1,2,3]]
features[:,4] = vec_pan
vec_mask = im_cloud.reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1])
# create buffer
im_buffer = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1]))
for i, contour in enumerate(wl_pix):
indices = [(int(_[0]), int(_[1])) for _ in list(np.round(contour))]
for j, idx in enumerate(indices):
im_buffer[idx] = 1
plt.figure()
plt.imshow(im_buffer)
plt.draw()
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_buffer, se)
plt.figure()
plt.imshow(im_buffer)
plt.draw()
vec_buffer = (im_buffer == 1).reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1])
vec_buffer= np.logical_and(vec_buffer, ~vec_mask)
#vec_buffer = np.ravel_multi_index(z,(im_ms_ps.shape[0], im_ms_ps.shape[1]))
kmeans = KMeans(n_clusters=6, random_state=0).fit(vec[vec_buffer,:])
labels = kmeans.labels_
labels_full = np.ones((len(vec_mask))) * np.nan
labels_full[vec_buffer] = labels
im_labels = labels_full.reshape(im_ms_ps.shape[0], im_ms_ps.shape[1])
plt.figure()
plt.imshow(im_labels)
plt.axis('equal')
plt.draw()
utils.compare_images(im_labels, im_pan)
plt.figure()
for i in range(6): plt.plot(kmeans.cluster_centers_[i,:])
plt.draw()
im_sand = im_labels == np.argmax(np.mean(kmeans.cluster_centers_[:,[0,1,2,4]], axis=1))
im_sand2 = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
im_sand3 = morphology.binary_dilation(im_sand2, morphology.disk(1))
plt.figure()
plt.imshow(im_sand3)
plt.draw()
im_ms_ps[im_sand3,0] = 0
im_ms_ps[im_sand3,1] = 0
im_ms_ps[im_sand3,2] = 1
plt.figure()
plt.imshow(im_ms_ps[:,:,[2,1,0]])
plt.axis('image')
plt.title('Sand classification')
plt.show()
#%%