#==========================================================# #==========================================================# # Download L5, L7, L8, S2 images of a given area #==========================================================# #==========================================================# #==========================================================# # Initial settings #==========================================================# import os import numpy as np import matplotlib.pyplot as plt import pdb import ee # other modules from osgeo import gdal, ogr, osr from urllib.request import urlretrieve import zipfile from datetime import datetime import pytz import pickle # import own modules import functions.utils as utils import functions.sds as sds np.seterr(all='ignore') # raise/ignore divisions by 0 and nans ee.Initialize() #==========================================================# # Location #==========================================================# ## location (Narrabeen-Collaroy beach) sitename = 'NARRA' polygon = [[[151.301454, -33.700754], [151.311453, -33.702075], [151.307237, -33.739761], [151.294220, -33.736329], [151.301454, -33.700754]]]; # initialise metadata dictionnary (stores timestamps and georefencing accuracy of each image) metadata = dict([]) # create directories try: os.makedirs(os.path.join(os.getcwd(), 'data',sitename)) except: print('directory already exists') #%% #==========================================================# #==========================================================# # S2 #==========================================================# #==========================================================# # define filenames for images suffix = '.tif' filepath = os.path.join(os.getcwd(), 'data', sitename, 'S2') try: os.makedirs(os.path.join(filepath, '10m')) os.makedirs(os.path.join(filepath, '20m')) os.makedirs(os.path.join(filepath, '60m')) except: print('directory already exists') #==========================================================# # Select L2 collection #==========================================================# satname = 'S2' input_col = ee.ImageCollection('COPERNICUS/S2') # filter by location flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)) n_img = flt_col.size().getInfo() print('Number of images covering ' + sitename, n_img) im_all = flt_col.getInfo().get('features') #==========================================================# # Main loop trough images #==========================================================# timestamps = [] acc_georef = [] all_names = [] im_epsg = [] for i in range(n_img): # find each image in ee database im = ee.Image(im_all[i].get('id')) im_dic = im.getInfo() im_bands = im_dic.get('bands') t = im_dic['properties']['system:time_start'] im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc) im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S') # delete dimensions key from dictionnary, otherwise the entire image is extracted for j in range(len(im_bands)): del im_bands[j]['dimensions'] # bands for S2 bands10 = [im_bands[1], im_bands[2], im_bands[3], im_bands[7]] bands20 = [im_bands[11]] bands60 = [im_bands[15]] # filenames filename10 = im_date + '_' + satname + '_' + sitename + '_' + '10m' + suffix filename20 = im_date + '_' + satname + '_' + sitename + '_' + '20m' + suffix filename60 = im_date + '_' + satname + '_' + sitename + '_' + '60m' + suffix print(i) if any(filename10 in _ for _ in all_names): continue all_names.append(filename10) local_data = sds.download_tif(im, polygon, bands10, filepath) os.rename(local_data, os.path.join(filepath, '10m', filename10)) local_data = sds.download_tif(im, polygon, bands20, filepath) os.rename(local_data, os.path.join(filepath, '20m', filename20)) local_data = sds.download_tif(im, polygon, bands60, filepath) os.rename(local_data, os.path.join(filepath, '60m', filename60)) timestamps.append(im_timestamp) im_epsg.append(int(im_dic['bands'][0]['crs'][5:])) try: if im_dic['properties']['GEOMETRIC_QUALITY_FLAG'] == 'PASSED': acc_georef.append(1) else: acc_georef.append(0) except: acc_georef.append(0) # sort timestamps and georef accuracy (dowloaded images are sorted by date in directory) timestamps_sorted = sorted(timestamps) idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__) acc_georef_sorted = [acc_georef[j] for j in idx_sorted] im_epsg_sorted = [im_epsg[j] for j in idx_sorted] metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted, 'epsg':im_epsg_sorted} #%% save metadata filepath = os.path.join(os.getcwd(), 'data', sitename) with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'wb') as f: pickle.dump(metadata, f)