# -*- coding: utf-8 -*- #==========================================================# # Download L7 images of a given area between given dates #==========================================================# # Initial settings import os import numpy as np import matplotlib.pyplot as plt import pdb import ee # other modules from osgeo import gdal, ogr, osr from urllib.request import urlretrieve import zipfile from datetime import datetime import pytz import pickle # image processing modules import skimage.filters as filters import skimage.exposure as exposure import skimage.transform as transform import sklearn.decomposition as decomposition import skimage.measure as measure # import own modules import functions.utils as utils np.seterr(all='ignore') # raise/ignore divisions by 0 and nans ee.Initialize() def download_tif(image, polygon, bandsId, filepath): """downloads tif image (region and bands) from the ee server and stores it in a temp file""" url = ee.data.makeDownloadUrl(ee.data.getDownloadId({ 'image': image.serialize(), 'region': polygon, 'bands': bandsId, 'filePerBand': 'false', 'name': 'data', })) local_zip, headers = urlretrieve(url) with zipfile.ZipFile(local_zip) as local_zipfile: return local_zipfile.extract('data.tif', filepath) # select collection input_col = ee.ImageCollection('LANDSAT/LE07/C01/T1_RT_TOA') # location (Narrabeen-Collaroy beach) rect_narra = [[[151.301454, -33.700754], [151.311453, -33.702075], [151.307237, -33.739761], [151.294220, -33.736329], [151.301454, -33.700754]]]; # dates #start_date = '2016-01-01' #end_date = '2016-12-31' # filter by location flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra))#.filterDate(start_date, end_date) n_img = flt_col.size().getInfo() print('Number of images covering Narrabeen:', n_img) im_all = flt_col.getInfo().get('features') satname = 'L7' sitename = 'NARRA' suffix = '.tif' filepath = os.path.join(os.getcwd(), 'data', satname, sitename) filepath_pan = os.path.join(filepath, 'pan') filepath_ms = os.path.join(filepath, 'ms') all_names_pan = [] all_names_ms = [] timestamps = [] # loop through all images for i in range(n_img): # find each image in ee database im = ee.Image(im_all[i].get('id')) im_dic = im.getInfo() im_bands = im_dic.get('bands') im_date = im_dic['properties']['DATE_ACQUIRED'] t = im_dic['properties']['system:time_start'] im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc) timestamps.append(im_timestamp) im_epsg = int(im_dic['bands'][0]['crs'][5:]) # delete dimensions key from dictionnary, otherwise the entire image is extracted for j in range(len(im_bands)): del im_bands[j]['dimensions'] pan_band = [im_bands[7]] ms_bands = [im_bands[0], im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[9]] filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + suffix filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + suffix print(i) if any(filename_pan in _ for _ in all_names_pan): filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + '_r' + suffix filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + '_r' + suffix all_names_pan.append(filename_pan) local_data_pan = download_tif(im, rect_narra, pan_band, filepath_pan) os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan)) local_data_ms = download_tif(im, rect_narra, ms_bands, filepath_ms) os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms)) with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'wb') as f: pickle.dump(timestamps, f) with open(os.path.join(filepath, sitename + '_epsgcode' + '.pkl'), 'wb') as f: pickle.dump(im_epsg, f)