You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
geetools_VH/time_coverage.py

356 lines
14 KiB
Python

# -*- coding: utf-8 -*-
#==========================================================#
# Compare Narrabeen SDS with 3D quadbike surveys
#==========================================================#
# Initial settings
import os
7 years ago
import numpy as np
import matplotlib.pyplot as plt
7 years ago
import pdb
import ee
import matplotlib.dates as mdates
7 years ago
import matplotlib.cm as cm
from datetime import datetime, timedelta
import pickle
import pytz
7 years ago
import scipy.io as sio
import scipy.interpolate as interpolate
import statsmodels.api as sm
import skimage.measure as measure
# my functions
import functions.utils as utils
import functions.sds as sds
7 years ago
# some settings
7 years ago
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
plt.rcParams['axes.grid'] = True
plt.rcParams['figure.max_open_warning'] = 100
au_tz = pytz.timezone('Australia/Sydney')
# load quadbike dates and convert from datenum to datetime
7 years ago
filename = 'data\quadbike\survey_dates.mat'
filepath = os.path.join(os.getcwd(), filename)
dates_quad = sio.loadmat(filepath)['dates'] # matrix containing year, month, day
dates_quad = [datetime(dates_quad[i,0], dates_quad[i,1], dates_quad[i,2],
tzinfo=au_tz) for i in range(dates_quad.shape[0])]
# load timestamps from satellite images
satname = 'L8'
sitename = 'NARRA'
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
with open(os.path.join(filepath, sitename + '_output2' + '.pkl'), 'rb') as f:
7 years ago
output = pickle.load(f)
dates_l8 = output['t']
# convert to AEST
dates_l8 = [_.astimezone(au_tz) for _ in dates_l8]
# load wave data (already AEST)
7 years ago
filename = 'data\wave\SydneyProcessed.mat'
filepath = os.path.join(os.getcwd(), filename)
wave_data = sio.loadmat(filepath)
idx = utils.find_indices(wave_data['dates'][:,0], lambda e: e >= dates_l8[0].year and e <= dates_l8[-1].year)
hsig = np.array([wave_data['Hsig'][i][0] for i in idx])
wdir = np.array([wave_data['Wdir'][i][0] for i in idx])
dates_wave = [datetime(wave_data['dates'][i,0], wave_data['dates'][i,1],
wave_data['dates'][i,2], wave_data['dates'][i,3],
wave_data['dates'][i,4], wave_data['dates'][i,5],
tzinfo=au_tz) for i in idx]
# load tide data (already AEST)
filename = 'SydTideData.mat'
filepath = os.path.join(os.getcwd(), 'data', 'tide', filename)
tide_data = sio.loadmat(filepath)
idx = utils.find_indices(tide_data['dates'][:,0], lambda e: e >= dates_l8[0].year and e <= dates_l8[-1].year)
tide = np.array([tide_data['tide'][i][0] for i in idx])
dates_tide = [datetime(tide_data['dates'][i,0], tide_data['dates'][i,1],
tide_data['dates'][i,2], tide_data['dates'][i,3],
tide_data['dates'][i,4], tide_data['dates'][i,5],
tzinfo=au_tz) for i in idx]
#%% make a plot of all the dates with wave data
orange = [255/255,140/255,0]
blue = [0,191/255,255/255]
7 years ago
f = plt.figure()
months = mdates.MonthLocator()
month_fmt = mdates.DateFormatter('%b %Y')
days = mdates.DayLocator()
years = [2013,2014,2015,2016]
for k in range(len(years)):
sel_year = years[k]
ax = plt.subplot(4,1,k+1)
idx_year = utils.find_indices(dates_wave, lambda e : e.year >= sel_year and e.year <= sel_year)
plt.plot([dates_wave[i] for i in idx_year], [hsig[i] for i in idx_year], 'k-', linewidth=0.5)
hsigmax = np.nanmax([hsig[i] for i in idx_year])
cbool = True
for j in range(len(dates_quad)):
if dates_quad[j].year == sel_year:
if cbool:
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange, label='survey')
7 years ago
cbool = False
else:
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange)
7 years ago
cbool = True
for j in range(len(dates_l8)):
if dates_l8[j].year == sel_year:
if cbool:
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue, label='landsat8')
7 years ago
cbool = False
else:
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue)
7 years ago
if k == 3:
plt.legend()
plt.xlim((datetime(sel_year,1,1), datetime(sel_year,12,31, tzinfo=au_tz)))
plt.ylim((0, hsigmax))
plt.ylabel('Hs [m]')
ax.xaxis.set_major_locator = months
ax.xaxis.set_major_formatter(month_fmt)
f.subplots_adjust(hspace=0.2)
plt.draw()
#%% calculate difference between dates (quad and sat)
7 years ago
diff_days = [ [(x - _).days for _ in dates_quad] for x in dates_l8]
max_diff = 10
7 years ago
idx_closest = [utils.find_indices(_, lambda e: abs(e) <= max_diff) for _ in diff_days]
# store in dates_diff dictionnary
7 years ago
dates_diff = []
cloud_cover = []
7 years ago
for i in range(len(idx_closest)):
if not idx_closest[i]:
continue
7 years ago
elif len(idx_closest[i]) > 1:
idx_best = np.argmin(np.abs([diff_days[i][_] for _ in idx_closest[i]]))
dates_temp = [dates_quad[_] for _ in idx_closest[i]]
days_temp = [diff_days[i][_] for _ in idx_closest[i]]
dates_diff.append({"date sat": dates_l8[i],
"date quad": dates_temp[idx_best],
"days diff": days_temp[idx_best]})
else:
dates_diff.append({"date sat": dates_l8[i],
"date quad": dates_quad[idx_closest[i][0]],
"days diff": diff_days[i][idx_closest[i][0]]
})
# store cloud data
cloud_cover.append(output['cloud_cover'][i])
# store wave data
wave_hsig = []
for i in range(len(dates_diff)):
wave_hsig.append(hsig[np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).total_seconds() for _ in dates_wave])))])
7 years ago
# make a plot
plt.figure()
counter = 0
for i in range(len(dates_diff)):
counter = counter + 1
if dates_diff[i]['date quad'] > dates_diff[i]['date sat']:
date_min = dates_diff[i]['date sat']
date_max = dates_diff[i]['date quad']
color1 = orange
color2 = blue
else:
date_min = dates_diff[i]['date quad']
date_max = dates_diff[i]['date sat']
color1 = blue
color2 = orange
idx_t = utils.find_indices(dates_wave, lambda e : e >= date_min and e <= date_max)
hsigmax = np.nanmax([hsig[i] for i in idx_t])
hsigmin = np.nanmin([hsig[i] for i in idx_t])
if counter > 9:
counter = 1
plt.figure()
ax = plt.subplot(3,3,counter)
plt.plot([dates_wave[i] for i in idx_t], [hsig[i] for i in idx_t], 'k-', linewidth=1.5)
plt.plot([date_min, date_min], [0, 4.5], color=color2, label='survey')
plt.plot([date_max, date_max], [0, 4.5], color=color1, label='landsat8')
plt.ylabel('Hs [m]')
ax.xaxis.set_major_locator(mdates.DayLocator(tz=au_tz))
ax.xaxis.set_minor_locator(mdates.HourLocator(tz=au_tz))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d'))
ax.xaxis.set_minor_locator(months)
plt.title(dates_diff[i]['date sat'].strftime('%b %Y') + ' (' + str(abs(dates_diff[i]['days diff'])) + ' days)')
plt.draw()
plt.gcf().subplots_adjust(hspace=0.5)
7 years ago
# mean day difference
np.mean([ np.abs(_['days diff']) for _ in dates_diff])
#%% Compare shorelines in elevation
dist_thresh = 200 # maximum distance between an sds point and a narrabeen point
frac_smooth = 1./10 # fraction of the data used for smoothing (the bigger the smoother)
dist_buffer = 50 # buffer of points selected for interpolation
7 years ago
# load quadbike .mat files
foldername = 'data\quadbike\surveys3D'
folderpath = os.path.join(os.getcwd(), foldername)
filenames = os.listdir(folderpath)
# get the satellite shorelines
7 years ago
sl = output['shorelines']
# load narrabeen beach points (manually digitized)
with open(os.path.join(os.getcwd(), 'olddata', 'narra_beach' + '.pkl'), 'rb') as f:
narrabeach = pickle.load(f)
# get dates from filenames
7 years ago
dates_quad = [datetime(int(_[6:10]), int(_[11:13]), int(_[14:16]), tzinfo= au_tz) for _ in filenames]
zav = []
ztide = []
sl_gt = []
sl_sds = []
7 years ago
for i in range(len(dates_diff)):
# select closest 3D survey and load .mat file
7 years ago
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).days for _ in dates_quad])))
survey3d = sio.loadmat(os.path.join(folderpath, filenames[idx_closest]))
# reshape to a vector
xs = survey3d['x'].reshape(survey3d['x'].shape[0] * survey3d['x'].shape[1])
ys = survey3d['y'].reshape(survey3d['y'].shape[0] * survey3d['y'].shape[1])
zs = survey3d['z'].reshape(survey3d['z'].shape[0] * survey3d['z'].shape[1])
# remove nan values
idx_nan = np.isnan(zs)
xs = xs[~idx_nan]
ys = ys[~idx_nan]
zs = zs[~idx_nan]
# select point of sds that are close to the manually digitized points
idx_beach = [np.min(np.linalg.norm(sl[i][k,:] - narrabeach, axis=1)) < dist_thresh for k in range(sl[i].shape[0])]
# smooth (LOWESS) satellite shoreline
sl_smooth = sm.nonparametric.lowess(sl[i][idx_beach,0],sl[i][idx_beach,1], frac=frac_smooth, it = 6)
sl_smooth = sl_smooth[:,[1,0]]
sl_sds.append(sl_smooth)
# find water level at the time the image was acquired
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).total_seconds() for _ in dates_tide])))
tide_level = tide[idx_closest]
ztide.append(tide_level)
# find contour corresponding to the water level on 3D surface (if below minimum, add 0.05m increments)
if tide_level < np.nanmin(survey3d['z']):
tide_level = np.nanmin(survey3d['z'])
sl_tide = measure.find_contours(survey3d['z'], tide_level)
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
count = 0
while len(sl_tide) < 900:
count = count + 1
tide_level = tide_level + 0.05*count
sl_tide = measure.find_contours(survey3d['z'], tide_level)
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
print('added ' + str(0.05*count) + ' cm - contour with ' + str(len(sl_tide)) + ' points')
else:
sl_tide = measure.find_contours(survey3d['z'], tide_level)
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
# remove nans
if np.any(np.isnan(sl_tide)):
index_nan = np.where(np.isnan(sl_tide))[0]
sl_tide = np.delete(sl_tide, index_nan, axis=0)
# get x,y coordinates
xtide = [survey3d['x'][int(np.round(sl_tide[m,0])), int(np.round(sl_tide[m,1]))] for m in range(sl_tide.shape[0])]
ytide = [survey3d['y'][int(np.round(sl_tide[m,0])), int(np.round(sl_tide[m,1]))] for m in range(sl_tide.shape[0])]
sl_gt.append(np.transpose(np.array([np.array(xtide), np.array(ytide)])))
# interpolate SDS on 3D surface to get elevation (point by point)
zq = np.zeros((sl_smooth.shape[0], 1))
for j in range(sl_smooth.shape[0]):
xq = sl_smooth[j,0]
yq = sl_smooth[j,1]
dist_q = np.linalg.norm(np.transpose(np.array([[xq - _ for _ in xs],[yq - _ for _ in ys]])), axis=1)
idx_buffer = dist_q <= dist_buffer
tck = interpolate.bisplrep(xs[idx_buffer], ys[idx_buffer], zs[idx_buffer])
zq[j] = interpolate.bisplev(xq, yq, tck)
# plt.figure()
# plt.axis('equal')
# plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
# label='quad data')
# plt.plot(xs[idx_buffer], ys[idx_buffer], 'ko')
# plt.plot(xq,yq,'ro')
# plt.draw()
# store the alongshore median elevation
zav.append(np.median(utils.reject_outliers(zq, m=2)))
# make plot
red = [255/255, 0, 0]
gray = [0.75, 0.75, 0.75]
plt.figure()
plt.subplot(121)
plt.axis('equal')
plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
label='3D survey')
plt.plot(xtide, ytide, '--', color=gray, linewidth=2.5, label='tide level contour')
plt.plot(sl_smooth[:,0], sl_smooth[:,1], '-', color=red, linewidth=2.5, label='SDS')
# plt.plot(sl[i][idx_beach,0], sl[i][idx_beach,1], 'w-', linewidth=2)
plt.xlabel('Eastings [m]')
plt.ylabel('Northings [m]')
plt.title('Shoreline comparison')
plt.colorbar(label='mAHD')
plt.legend()
plt.ylim((6266100, 6267000))
plt.subplot(122)
plt.plot(sl_smooth[:,1], zq, 'ko-', markersize=5)
plt.plot([sl_smooth[0,1], sl_smooth[-1,1]], [zav[i], zav[i]], 'r--', label='median')
plt.plot([sl_smooth[0,1], sl_smooth[-1,1]], [ztide[i], ztide[i]], 'g--', label = 'measured tide')
plt.xlabel('Northings [m]')
plt.ylabel('Elevation [mAHD]')
plt.title('Alongshore SDS elevation')
plt.legend()
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
plt.tight_layout()
plt.draw()
print(i)
#%% Calculate some error statistics
zav = np.array(zav)
ztide = np.array(ztide)
f = plt.figure()
plt.subplot(3,1,1)
plt.bar(np.linspace(1,len(zav),len(zav)), zav-ztide)
plt.ylabel('Error in z [m]')
plt.title('Elevation error')
plt.xticks([])
plt.draw()
plt.subplot(3,1,2)
plt.bar(np.linspace(1,len(zav),len(zav)), wave_hsig, color=orange)
plt.ylabel('Hsig [m]')
plt.xticks([])
plt.draw()
plt.subplot(3,1,3)
plt.bar(np.linspace(1,len(zav),len(zav)), np.array(cloud_cover)*100, color='g')
plt.ylabel('Cloud cover %')
plt.xlabel('comparison #')
plt.grid(False)
plt.grid(axis='y')
f.subplots_adjust(hspace=0)
plt.draw()
np.sqrt(np.mean((zav - ztide)**2))
#%% plot to show LOWESS smoothing
#i = 0
#idx_beach = [np.min(np.linalg.norm(sl[i][k,:] - narrabeach, axis=1)) < dist_thresh for k in range(sl[i].shape[0])]
#x = sl[i][idx_beach,0]
#y = sl[i][idx_beach,1]
#sl_smooth = lowess(x,y, frac=1./10, it = 10)
#
#plt.figure()
#plt.axis('equal')
#plt.scatter
#plt.plot(x,y,'bo', linewidth=2, label='original SDS')
#plt.plot(sl_smooth[:,1], sl_smooth[:,0], 'ro', linewidth=2, label='smoothed SDS')
#plt.legend()
#plt.xlabel('Eastings [m]')
#plt.ylabel('Northings [m]')
#plt.title('Local weighted scatterplot smoothing (LOWESS)')
#plt.draw()