forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.2 KiB
Python
137 lines
4.2 KiB
Python
7 years ago
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Tue Mar 20 16:15:51 2018
|
||
|
|
||
|
@author: z5030440
|
||
|
"""
|
||
|
|
||
|
import scipy.io as sio
|
||
|
import os
|
||
|
import ee
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.dates as mdates
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from datetime import datetime, timedelta
|
||
|
import pickle
|
||
|
import pdb
|
||
|
import pytz
|
||
|
|
||
|
|
||
|
# image processing modules
|
||
|
import skimage.filters as filters
|
||
|
import skimage.exposure as exposure
|
||
|
import skimage.transform as transform
|
||
|
import skimage.morphology as morphology
|
||
|
import skimage.measure as measure
|
||
|
import sklearn.decomposition as decomposition
|
||
|
from scipy import spatial
|
||
|
# my functions
|
||
|
import functions.utils as utils
|
||
|
import functions.sds as sds
|
||
|
#plt.rcParams['axes.grid'] = True
|
||
|
au_tz = pytz.timezone('Australia/Sydney')
|
||
|
|
||
|
# load quadbike dates and convert from datenum to datetime
|
||
|
suffix = '.mat'
|
||
|
dir_name = os.getcwd()
|
||
|
file_name = 'data\quadbike_dates'
|
||
|
file_path = os.path.join(dir_name, file_name + suffix)
|
||
|
quad_dates = sio.loadmat(file_path)['dates']
|
||
|
dt_quad = []
|
||
|
for i in range(quad_dates.shape[0]):
|
||
|
dt_quad.append(datetime(quad_dates[i,0], quad_dates[i,1], quad_dates[i,2], tzinfo=au_tz))
|
||
|
|
||
|
# load satellite datetimes (in UTC) and convert to AEST time
|
||
|
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
|
||
|
# location (Narrabeen-Collaroy beach)
|
||
|
rect_narra = [[[151.3473129272461,-33.69035274454718],
|
||
|
[151.2820816040039,-33.68206818063878],
|
||
|
[151.27281188964844,-33.74775138989556],
|
||
|
[151.3425064086914,-33.75231878701767],
|
||
|
[151.3473129272461,-33.69035274454718]]];
|
||
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra))
|
||
|
n_img = flt_col.size().getInfo()
|
||
|
print('Number of images covering Narrabeen:', n_img)
|
||
|
im_all = flt_col.getInfo().get('features')
|
||
|
|
||
|
# extract datetimes from image metadata
|
||
|
dt_sat = [_['properties']['system:time_start'] for _ in im_all]
|
||
|
dt_sat = [datetime.fromtimestamp(_/1000, tz=pytz.utc) for _ in dt_sat]
|
||
|
dt_sat = [_.astimezone(au_tz) for _ in dt_sat]
|
||
|
# calculate days difference
|
||
|
diff_days = [ [(x - _).days for _ in dt_quad] for x in dt_sat]
|
||
|
day_thresh = 15
|
||
|
idx = [utils.find_indices(_, lambda e: abs(e) < day_thresh) for _ in diff_days]
|
||
|
|
||
|
dt_diff = []
|
||
|
idx_nogt = []
|
||
|
for i in range(n_img):
|
||
|
if not idx[i]:
|
||
|
idx_nogt.append(i)
|
||
|
continue
|
||
|
dt_diff.append({"sat dt": dt_sat[i],
|
||
|
"quad dt": [dt_quad[_] for _ in idx[i]],
|
||
|
"days diff": [diff_days[i][_] for _ in idx[i]] })
|
||
|
|
||
|
with open('idx_nogt.pkl', 'wb') as f:
|
||
|
pickle.dump(idx_nogt, f)
|
||
|
|
||
|
|
||
|
#%%
|
||
|
dates_sat = mdates.date2num(dt_sat)
|
||
|
dates_quad = mdates.date2num(dt_quad)
|
||
|
plt.figure()
|
||
|
plt.plot_date(dates_sat, np.zeros((n_img,1)))
|
||
|
plt.plot_date(dates_quad, np.ones((len(dates_quad),1)))
|
||
|
plt.show()
|
||
|
|
||
|
data = pd.read_pickle('data_2016.pkl')
|
||
|
|
||
|
dt_sat = [_.astimezone(au_tz) for _ in data['dt']]
|
||
|
|
||
|
[ (_ - dt_sat[0]).days for _ in dt_quad]
|
||
|
|
||
|
|
||
|
|
||
|
dn_sat = []
|
||
|
for i in range(len(dt_sat)): dn_sat.append(dt_sat[i].toordinal())
|
||
|
dn_sat = np.array(dn_sat)
|
||
|
dn_sur = []
|
||
|
for i in range(len(dt_survey)): dn_sur.append(dt_survey[i].toordinal())
|
||
|
dn_sur = np.array(dn_sur)
|
||
|
|
||
|
distances = np.zeros((len(dn_sat),4)).astype('int32')
|
||
|
indexes = np.zeros((len(dn_sat),2)).astype('int32')
|
||
|
for i in range(len(dn_sat)):
|
||
|
distances[i,0] = np.sort(abs(dn_sat[i] - dn_sur))[0]
|
||
|
distances[i,1] = np.sort(abs(dn_sat[i] - dn_sur))[1]
|
||
|
distances[i,2] = dt_sat[i].year
|
||
|
distances[i,3] = dt_sat[i].month
|
||
|
indexes[i,0] = np.where(abs(dn_sat[i] - dn_sur) == np.sort(abs(dn_sat[i] - dn_sur))[0])[0][0]
|
||
|
indexes[i,1] = np.where(abs(dn_sat[i] - dn_sur) == np.sort(abs(dn_sat[i] - dn_sur))[1])[0][0]
|
||
|
|
||
|
|
||
|
years = [2013, 2014, 2015, 2016]
|
||
|
months = mdates.MonthLocator()
|
||
|
days = mdates.DayLocator()
|
||
|
month_fmt = mdates.DateFormatter('%b')
|
||
|
f, ax = plt.subplots(4, 1)
|
||
|
for i, ca in enumerate(ax):
|
||
|
ca.xaxis.set_major_locator(months)
|
||
|
ca.xaxis.set_major_formatter(month_fmt)
|
||
|
ca.xaxis.set_minor_locator(days)
|
||
|
ca.set_ylabel(str(years[i]))
|
||
|
for j in range(len(dt_sat)):
|
||
|
if dt_sat[j].year == years[i]:
|
||
|
ca.plot(dt_sat[j],0, 'bo', markerfacecolor='b')
|
||
|
#f.subplots_adjust(hspace=0)
|
||
|
#plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False)
|
||
|
|
||
|
|
||
|
plt.plot(dt_survey, np.zeros([len(dt_survey),1]), 'bo')
|
||
|
plt.plot(dt_sat, np.ones([len(dt_sat),1]), 'ro')
|
||
|
plt.yticks([])
|
||
|
plt.show()
|
||
|
|