|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
|
|
Created on Fri Mar 23 12:46:04 2018
|
|
|
|
|
|
|
|
@author: z5030440
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Preamble
|
|
|
|
|
|
|
|
import ee
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.cm as cm
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from datetime import datetime
|
|
|
|
import pickle
|
|
|
|
import pdb
|
|
|
|
import pytz
|
|
|
|
from pylab import ginput
|
|
|
|
|
|
|
|
# image processing modules
|
|
|
|
import skimage.filters as filters
|
|
|
|
import skimage.exposure as exposure
|
|
|
|
import skimage.transform as transform
|
|
|
|
import sklearn.decomposition as decomposition
|
|
|
|
import skimage.morphology as morphology
|
|
|
|
import skimage.measure as measure
|
|
|
|
|
|
|
|
# my functions
|
|
|
|
import functions.utils as utils
|
|
|
|
import functions.sds as sds
|
|
|
|
|
|
|
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
|
|
|
ee.Initialize()
|
|
|
|
|
|
|
|
#%% Select images
|
|
|
|
|
|
|
|
# parameters
|
|
|
|
plot_bool = True # if you want the plots
|
|
|
|
prob_high = 99.9 # upper probability to clip and rescale pixel intensity
|
|
|
|
min_contour_points = 100 # minimum number of points contained in each water line
|
|
|
|
output_epsg = 28356 # GDA94 / MGA Zone 56
|
|
|
|
cloud_threshold = 0.8
|
|
|
|
|
|
|
|
# select collection
|
|
|
|
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
|
|
|
|
satname = 'L8'
|
|
|
|
# location (Narrabeen-Collaroy beach)
|
|
|
|
#rect_narra = [[[151.3473129272461,-33.69035274454718],
|
|
|
|
# [151.2820816040039,-33.68206818063878],
|
|
|
|
# [151.27281188964844,-33.74775138989556],
|
|
|
|
# [151.3425064086914,-33.75231878701767],
|
|
|
|
# [151.3473129272461,-33.69035274454718]]];
|
|
|
|
|
|
|
|
#rect_narra = [[[151.301454, -33.700754],
|
|
|
|
# [151.311453, -33.702075],
|
|
|
|
# [151.307237, -33.739761],
|
|
|
|
# [151.294220, -33.736329],
|
|
|
|
# [151.301454, -33.700754]]];
|
|
|
|
# location (Oldbar NSW)
|
|
|
|
rect_narra = [[[152.578395, -31.841216],
|
|
|
|
[152.777281, -31.842523],
|
|
|
|
[152.738086, -32.028773],
|
|
|
|
[152.557812, -32.004663],
|
|
|
|
[152.578395, -31.841216]]];
|
|
|
|
|
|
|
|
# Dates
|
|
|
|
start_date = '2018-01-18'
|
|
|
|
end_date = '2018-01-20'
|
|
|
|
# filter by location
|
|
|
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra)).filterDate(start_date, end_date)
|
|
|
|
|
|
|
|
n_img = flt_col.size().getInfo()
|
|
|
|
print('Number of images covering Narrabeen:', n_img)
|
|
|
|
im_all = flt_col.getInfo().get('features')
|
|
|
|
|
|
|
|
# find each image in ee database
|
|
|
|
im = ee.Image(im_all[0].get('id'))
|
|
|
|
# load image as np.array
|
|
|
|
im_pan, im_ms, im_cloud, crs, meta = sds.read_eeimage(im, rect_narra, satname, plot_bool)
|
|
|
|
|
|
|
|
# rescale intensities
|
|
|
|
im_ms = sds.rescale_image_intensity(im_ms, im_cloud, prob_high, plot_bool)
|
|
|
|
im_pan = sds.rescale_image_intensity(im_pan, im_cloud, prob_high, plot_bool)
|
|
|
|
|
|
|
|
# pansharpen rgb image
|
|
|
|
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, im_cloud, plot_bool)
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.imshow(im_ms_ps[:,:,[2,1,0]])
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
pts = ginput(n=20, timeout=1000, show_clicks=True)
|
|
|
|
points = np.array(pts)
|
|
|
|
plt.plot(points[:,0], points[:,1], 'ko')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
pts_coords = sds.convert_pix2world(points[:,[1,0]], crs['crs_15m'])
|
|
|
|
pts = sds.convert_epsg(pts_coords, crs['epsg_code'], output_epsg)
|
|
|
|
|
|
|
|
with open('olddata/oldbar_beach.pkl', 'wb') as f:
|
|
|
|
pickle.dump(pts, f)
|
|
|
|
|
|
|
|
|
|
|
|
#pts_wgs84 = sds.convert_epsg(pts_coords, crs['epsg_code'], 4326)
|
|
|
|
#
|
|
|
|
#import simplekml
|
|
|
|
#kml = simplekml.Kml()
|
|
|
|
#kml.new(name='test', coords=pts_wgs84)
|
|
|
|
#kml.save("test.kml")
|