forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
2.7 KiB
Python
96 lines
2.7 KiB
Python
7 years ago
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Fri Mar 23 12:46:04 2018
|
||
|
|
||
|
@author: z5030440
|
||
|
"""
|
||
|
|
||
|
# Preamble
|
||
|
|
||
|
import ee
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.cm as cm
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from datetime import datetime
|
||
|
import pickle
|
||
|
import pdb
|
||
|
import pytz
|
||
|
from pylab import ginput
|
||
|
|
||
|
# image processing modules
|
||
|
import skimage.filters as filters
|
||
|
import skimage.exposure as exposure
|
||
|
import skimage.transform as transform
|
||
|
import sklearn.decomposition as decomposition
|
||
|
import skimage.morphology as morphology
|
||
|
import skimage.measure as measure
|
||
|
|
||
|
# my functions
|
||
|
import functions.utils as utils
|
||
|
import functions.sds as sds
|
||
|
|
||
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
||
|
ee.Initialize()
|
||
|
|
||
|
#%% Select images
|
||
|
|
||
|
# parameters
|
||
|
plot_bool = False # if you want the plots
|
||
|
prob_high = 99.9 # upper probability to clip and rescale pixel intensity
|
||
|
min_contour_points = 100 # minimum number of points contained in each water line
|
||
|
output_epsg = 28356 # GDA94 / MGA Zone 56
|
||
|
cloud_threshold = 0.8
|
||
|
|
||
|
# select collection
|
||
|
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
|
||
|
|
||
|
# location (Narrabeen-Collaroy beach)
|
||
|
rect_narra = [[[151.3473129272461,-33.69035274454718],
|
||
|
[151.2820816040039,-33.68206818063878],
|
||
|
[151.27281188964844,-33.74775138989556],
|
||
|
[151.3425064086914,-33.75231878701767],
|
||
|
[151.3473129272461,-33.69035274454718]]];
|
||
|
|
||
|
#rect_narra = [[[151.301454, -33.700754],
|
||
|
# [151.311453, -33.702075],
|
||
|
# [151.307237, -33.739761],
|
||
|
# [151.294220, -33.736329],
|
||
|
# [151.301454, -33.700754]]];
|
||
|
|
||
|
# Dates
|
||
|
start_date = '2016-01-01'
|
||
|
end_date = '2016-12-31'
|
||
|
# filter by location
|
||
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra)).filterDate(start_date, end_date)
|
||
|
|
||
|
n_img = flt_col.size().getInfo()
|
||
|
print('Number of images covering Narrabeen:', n_img)
|
||
|
im_all = flt_col.getInfo().get('features')
|
||
|
|
||
|
# find each image in ee database
|
||
|
im = ee.Image(im_all[0].get('id'))
|
||
|
# load image as np.array
|
||
|
im_pan, im_ms, im_cloud, crs, meta = sds.read_eeimage(im, rect_narra, plot_bool)
|
||
|
|
||
|
# rescale intensities
|
||
|
im_ms = sds.rescale_image_intensity(im_ms, im_cloud, prob_high, plot_bool)
|
||
|
im_pan = sds.rescale_image_intensity(im_pan, im_cloud, prob_high, plot_bool)
|
||
|
|
||
|
# pansharpen rgb image
|
||
|
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, im_cloud, plot_bool)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.imshow(im_ms_ps[:,:,[2,1,0]])
|
||
|
plt.show()
|
||
|
|
||
|
pts = ginput(15)
|
||
|
points = np.array(pts)
|
||
|
plt.plot(points[:,0], points[:,1], 'ko')
|
||
|
plt.show()
|
||
|
|
||
|
pts_coords = sds.convert_pix2world(points[:,[1,0]], crs['crs_15m'])
|
||
|
pts = sds.convert_epsg(pts_coords, crs['epsg_code'], output_epsg)
|
||
|
|
||
|
with open('data/narra_beach.pkl', 'wb') as f:
|
||
|
pickle.dump(pts, f)
|