forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
6.9 KiB
Python
183 lines
6.9 KiB
Python
7 years ago
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
#==========================================================#
|
||
|
# Extract shorelines from Landsat images
|
||
|
#==========================================================#
|
||
|
|
||
|
# Initial settings
|
||
|
import os
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
import ee
|
||
|
import pdb
|
||
|
|
||
|
# other modules
|
||
|
from osgeo import gdal, ogr, osr
|
||
|
import pickle
|
||
|
import matplotlib.cm as cm
|
||
|
from pylab import ginput
|
||
|
|
||
|
# image processing modules
|
||
|
import skimage.filters as filters
|
||
|
import skimage.exposure as exposure
|
||
|
import skimage.transform as transform
|
||
|
import sklearn.decomposition as decomposition
|
||
|
import skimage.measure as measure
|
||
|
import skimage.morphology as morphology
|
||
|
|
||
|
# machine learning modules
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.neural_network import MLPClassifier
|
||
|
from sklearn.preprocessing import StandardScaler, Normalizer
|
||
|
from sklearn.externals import joblib
|
||
|
|
||
|
# import own modules
|
||
|
import functions.utils as utils
|
||
|
import functions.sds as sds
|
||
|
|
||
|
# some settings
|
||
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
||
|
plt.rcParams['axes.grid'] = True
|
||
|
plt.rcParams['figure.max_open_warning'] = 100
|
||
|
ee.Initialize()
|
||
|
|
||
|
# parameters
|
||
|
cloud_thresh = 0.3 # threshold for cloud cover
|
||
|
plot_bool = False # if you want the plots
|
||
|
min_contour_points = 100# minimum number of points contained in each water line
|
||
|
output_epsg = 28356 # GDA94 / MGA Zone 56
|
||
|
buffer_size = 7 # radius (in pixels) of disk for buffer (pixel classification)
|
||
|
min_beach_size = 50 # number of pixels in a beach (pixel classification)
|
||
|
|
||
|
# load metadata (timestamps and epsg code) for the collection
|
||
|
satname = 'L8'
|
||
|
sitename = 'NARRA'
|
||
|
#sitename = 'OLDBAR'
|
||
|
|
||
|
# Load metadata
|
||
|
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
|
||
|
with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'rb') as f:
|
||
|
timestamps = pickle.load(f)
|
||
|
with open(os.path.join(filepath, sitename + '_accuracy_georef' + '.pkl'), 'rb') as f:
|
||
|
acc_georef = pickle.load(f)
|
||
|
with open(os.path.join(filepath, sitename + '_epsgcode' + '.pkl'), 'rb') as f:
|
||
|
input_epsg = pickle.load(f)
|
||
|
with open(os.path.join(filepath, sitename + '_refpoints' + '.pkl'), 'rb') as f:
|
||
|
refpoints = pickle.load(f)
|
||
|
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
|
||
|
timestamps_sorted = sorted(timestamps)
|
||
|
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
||
|
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
||
|
|
||
|
# path to images
|
||
|
file_path_pan = os.path.join(os.getcwd(), 'data', satname, sitename, 'pan')
|
||
|
file_path_ms = os.path.join(os.getcwd(), 'data', satname, sitename, 'ms')
|
||
|
file_names_pan = os.listdir(file_path_pan)
|
||
|
file_names_ms = os.listdir(file_path_ms)
|
||
|
N = len(file_names_pan)
|
||
|
|
||
|
# initialise some variables
|
||
|
cloud_cover_ts = []
|
||
|
date_acquired_ts = []
|
||
|
acc_georef_ts = []
|
||
|
idx_skipped = []
|
||
|
idx_nocloud = []
|
||
|
t = []
|
||
|
shorelines = []
|
||
|
idx_keep = []
|
||
|
#%%
|
||
|
for i in range(N):
|
||
|
|
||
|
# read pan image
|
||
|
fn_pan = os.path.join(file_path_pan, file_names_pan[i])
|
||
|
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
|
||
|
georef = np.array(data.GetGeoTransform())
|
||
|
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
|
||
|
im_pan = np.stack(bands, 2)[:,:,0]
|
||
|
nrows = im_pan.shape[0]
|
||
|
ncols = im_pan.shape[1]
|
||
|
|
||
|
# read ms image
|
||
|
fn_ms = os.path.join(file_path_ms, file_names_ms[i])
|
||
|
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
|
||
|
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
|
||
|
im_ms = np.stack(bands, 2)
|
||
|
|
||
|
# cloud mask
|
||
|
im_qa = im_ms[:,:,5]
|
||
|
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
|
||
|
cloud_mask = transform.resize(cloud_mask, (im_pan.shape[0], im_pan.shape[1]),
|
||
|
order=0, preserve_range=True,
|
||
|
mode='constant').astype('bool_')
|
||
|
# resize the image using bilinear interpolation (order 1)
|
||
|
im_ms = transform.resize(im_ms,(im_pan.shape[0], im_pan.shape[1]),
|
||
|
order=1, preserve_range=True, mode='constant')
|
||
|
|
||
|
# check if -inf or nan values and add to cloud mask
|
||
|
im_inf = np.isin(im_ms[:,:,0], -np.inf)
|
||
|
im_nan = np.isnan(im_ms[:,:,0])
|
||
|
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
||
|
|
||
|
# calculate cloud cover and skip image if too high
|
||
|
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
||
|
if cloud_cover > cloud_thresh:
|
||
|
print('skip ' + str(i) + ' - cloudy (' + str(cloud_cover) + ')')
|
||
|
idx_skipped.append(i)
|
||
|
continue
|
||
|
idx_nocloud.append(i)
|
||
|
|
||
|
# check if image for that date already exists and choose the best in terms of cloud cover and georeferencing
|
||
|
if file_names_pan[i][len(satname)+1+len(sitename)+1:len(satname)+1+len(sitename)+1+10] in date_acquired_ts:
|
||
|
|
||
|
# find the index of the image that is repeated
|
||
|
idx_samedate = utils.find_indices(date_acquired_ts, lambda e : e == file_names_pan[i][9:19])
|
||
|
idx_samedate = idx_samedate[0]
|
||
|
print('cloud cover ' + str(cloud_cover) + ' - ' + str(cloud_cover_ts[idx_samedate]))
|
||
|
print('acc georef ' + str(acc_georef_sorted[i]) + ' - ' + str(acc_georef_ts[idx_samedate]))
|
||
|
|
||
|
# keep image with less cloud cover or best georeferencing accuracy
|
||
|
if cloud_cover < cloud_cover_ts[idx_samedate] - 0.01:
|
||
|
skip = False
|
||
|
elif acc_georef_sorted[i] < acc_georef_ts[idx_samedate]:
|
||
|
skip = False
|
||
|
else:
|
||
|
skip = True
|
||
|
|
||
|
if skip:
|
||
|
print('skip ' + str(i) + ' - repeated')
|
||
|
idx_skipped.append(i)
|
||
|
continue
|
||
|
else:
|
||
|
# del shorelines[idx_samedate]
|
||
|
del t[idx_samedate]
|
||
|
del cloud_cover_ts[idx_samedate]
|
||
|
del date_acquired_ts[idx_samedate]
|
||
|
del acc_georef_ts[idx_samedate]
|
||
|
print('keep ' + str(i) + ' - deleted ' + str(idx_samedate))
|
||
|
|
||
|
# pansharpen rgb image
|
||
|
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
|
||
|
# rescale pansharpened RGB for visualisation
|
||
|
im_display = sds.rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 100, False)
|
||
|
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
|
||
|
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
|
||
|
|
||
|
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
|
||
|
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool)
|
||
|
idx_keep.append(i)
|
||
|
if sum(sum(im_labels[:,:,0])) == 0 :
|
||
|
print('skip ' + str(i) + ' - no sand')
|
||
|
idx_skipped.append(i)
|
||
|
continue
|
||
|
|
||
|
# extract shorelines (new method)
|
||
|
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size, True)
|
||
|
|
||
|
t.append(timestamps_sorted[i])
|
||
|
cloud_cover_ts.append(cloud_cover)
|
||
|
acc_georef_ts.append(acc_georef_sorted[i])
|
||
|
date_acquired_ts.append(file_names_pan[i][9:19])
|
||
|
|
||
|
|
||
|
|
||
|
|