|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
|
|
Created on Thu Mar 1 11:20:35 2018
|
|
|
|
|
|
|
|
@author: z5030440
|
|
|
|
"""
|
|
|
|
|
|
|
|
"""This module contains all the functions needed for extracting satellite derived shoreline (SDS) """
|
|
|
|
|
|
|
|
# Initial settings
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.patches as mpatches
|
|
|
|
from matplotlib import gridspec
|
|
|
|
import pdb
|
|
|
|
import ee
|
|
|
|
|
|
|
|
# other modules
|
|
|
|
from osgeo import gdal, ogr, osr
|
|
|
|
import tempfile
|
|
|
|
from urllib.request import urlretrieve
|
|
|
|
import zipfile
|
|
|
|
import scipy.interpolate as interpolate
|
|
|
|
|
|
|
|
# image processing modules
|
|
|
|
import skimage.filters as filters
|
|
|
|
import skimage.exposure as exposure
|
|
|
|
import skimage.transform as transform
|
|
|
|
import sklearn.decomposition as decomposition
|
|
|
|
import skimage.measure as measure
|
|
|
|
import skimage.morphology as morphology
|
|
|
|
|
|
|
|
# machine learning modules
|
|
|
|
from sklearn.cluster import KMeans
|
|
|
|
from sklearn.neural_network import MLPClassifier
|
|
|
|
from sklearn.externals import joblib
|
|
|
|
|
|
|
|
|
|
|
|
# import own modules
|
|
|
|
from functions.utils import *
|
|
|
|
|
|
|
|
|
|
|
|
# Download from ee server function
|
|
|
|
|
|
|
|
def download_tif(image, polygon, bandsId, filepath):
|
|
|
|
"""downloads tif image (region and bands) from the ee server and stores it in a temp file"""
|
|
|
|
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
|
|
|
|
'image': image.serialize(),
|
|
|
|
'region': polygon,
|
|
|
|
'bands': bandsId,
|
|
|
|
'filePerBand': 'false',
|
|
|
|
'name': 'data',
|
|
|
|
}))
|
|
|
|
local_zip, headers = urlretrieve(url)
|
|
|
|
with zipfile.ZipFile(local_zip) as local_zipfile:
|
|
|
|
return local_zipfile.extract('data.tif', filepath)
|
|
|
|
|
|
|
|
def create_cloud_mask(im_qa, satname, plot_bool):
|
|
|
|
"""
|
|
|
|
Creates a cloud mask from the image containing the QA band information
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im_qa: np.ndarray
|
|
|
|
Image containing the QA band
|
|
|
|
satname: string
|
|
|
|
short name for the satellite (L8, L7, S2)
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
cloud_mask : np.ndarray of booleans
|
|
|
|
A boolean array with True where the cloud are present
|
|
|
|
"""
|
|
|
|
|
|
|
|
# convert QA bits
|
|
|
|
if satname == 'L8':
|
|
|
|
cloud_values = [2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908]
|
|
|
|
elif satname == 'L7' or satname == 'L5' or satname == 'L4':
|
|
|
|
cloud_values = [752, 756, 760, 764]
|
|
|
|
elif satname == 'S2':
|
|
|
|
cloud_values = [1024, 2048] # 1024 = dense cloud, 2048 = cirrus clouds
|
|
|
|
|
|
|
|
cloud_mask = np.isin(im_qa, cloud_values)
|
|
|
|
# remove isolated cloud pixels (there are some in the swash and they cause problems)
|
|
|
|
if sum(sum(cloud_mask)) > 0:
|
|
|
|
morphology.remove_small_objects(cloud_mask, min_size=10, connectivity=1, in_place=True)
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
plt.figure()
|
|
|
|
plt.imshow(cloud_mask, cmap='gray')
|
|
|
|
plt.draw()
|
|
|
|
|
|
|
|
#cloud_shadow_values = [2976, 2980, 2984, 2988, 3008, 3012, 3016, 3020]
|
|
|
|
#cloud_shadow_mask = np.isin(im_qa, cloud_shadow_values)
|
|
|
|
|
|
|
|
return cloud_mask
|
|
|
|
|
|
|
|
def rescale_image_intensity(im, cloud_mask, prob_high, plot_bool):
|
|
|
|
"""
|
|
|
|
Rescales the intensity of an image (multispectral or single band) by applying
|
|
|
|
a cloud mask and clipping the prob_high upper percentile. This functions allows
|
|
|
|
to stretch the contrast of an image.
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im: np.ndarray
|
|
|
|
Image to rescale, can be 3D (multispectral) or 2D (single band)
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
prob_high: float
|
|
|
|
probability of exceedence used to calculate the upper percentile
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
im_adj: np.ndarray
|
|
|
|
The rescaled image
|
|
|
|
"""
|
|
|
|
prc_low = 0 # lower percentile
|
|
|
|
vec_mask = cloud_mask.reshape(im.shape[0] * im.shape[1])
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
plt.figure()
|
|
|
|
|
|
|
|
if len(im.shape) > 2:
|
|
|
|
vec = im.reshape(im.shape[0] * im.shape[1], im.shape[2])
|
|
|
|
vec_adj = np.ones((len(vec_mask), im.shape[2])) * np.nan
|
|
|
|
|
|
|
|
for i in range(im.shape[2]):
|
|
|
|
prc_high = np.percentile(vec[~vec_mask, i], prob_high)
|
|
|
|
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask, i], in_range=(prc_low, prc_high))
|
|
|
|
vec_adj[~vec_mask,i] = vec_rescaled
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
plt.subplot(np.floor(im.shape[2]/2) + 1, np.floor(im.shape[2]/2), i+1)
|
|
|
|
plt.hist(vec[~vec_mask, i], bins=200, label='original')
|
|
|
|
plt.hist(vec_rescaled, bins=200, alpha=0.5, label='rescaled')
|
|
|
|
plt.legend()
|
|
|
|
plt.title('Band' + str(i+1))
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
im_adj = vec_adj.reshape(im.shape[0], im.shape[1], im.shape[2])
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
plt.figure()
|
|
|
|
ax1 = plt.subplot(121)
|
|
|
|
plt.imshow(im[:,:,[2,1,0]])
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Original')
|
|
|
|
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
|
|
|
|
plt.imshow(im_adj[:,:,[2,1,0]])
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Rescaled')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
else:
|
|
|
|
vec = im.reshape(im.shape[0] * im.shape[1])
|
|
|
|
vec_adj = np.ones(len(vec_mask)) * np.nan
|
|
|
|
prc_high = np.percentile(vec[~vec_mask], prob_high)
|
|
|
|
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask], in_range=(prc_low, prc_high))
|
|
|
|
vec_adj[~vec_mask] = vec_rescaled
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
plt.hist(vec[~vec_mask], bins=200, label='original')
|
|
|
|
plt.hist(vec_rescaled, bins=200, alpha=0.5, label='rescaled')
|
|
|
|
plt.legend()
|
|
|
|
plt.title('Single band')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
im_adj = vec_adj.reshape(im.shape[0], im.shape[1])
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
plt.figure()
|
|
|
|
ax1 = plt.subplot(121)
|
|
|
|
plt.imshow(im, cmap='gray')
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Original')
|
|
|
|
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
|
|
|
|
plt.imshow(im_adj, cmap='gray')
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Rescaled')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
return im_adj
|
|
|
|
|
|
|
|
|
|
|
|
def hist_match(source, template):
|
|
|
|
"""
|
|
|
|
Adjust the pixel values of a grayscale image such that its histogram
|
|
|
|
matches that of a target image
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
source: np.ndarray
|
|
|
|
Image to transform; the histogram is computed over the flattened
|
|
|
|
array
|
|
|
|
template: np.ndarray
|
|
|
|
Template image; can have different dimensions to source
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
matched: np.ndarray
|
|
|
|
The transformed output image
|
|
|
|
"""
|
|
|
|
|
|
|
|
oldshape = source.shape
|
|
|
|
source = source.ravel()
|
|
|
|
template = template.ravel()
|
|
|
|
|
|
|
|
# get the set of unique pixel values and their corresponding indices and
|
|
|
|
# counts
|
|
|
|
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
|
|
|
|
return_counts=True)
|
|
|
|
t_values, t_counts = np.unique(template, return_counts=True)
|
|
|
|
|
|
|
|
# take the cumsum of the counts and normalize by the number of pixels to
|
|
|
|
# get the empirical cumulative distribution functions for the source and
|
|
|
|
# template images (maps pixel value --> quantile)
|
|
|
|
s_quantiles = np.cumsum(s_counts).astype(np.float64)
|
|
|
|
s_quantiles /= s_quantiles[-1]
|
|
|
|
t_quantiles = np.cumsum(t_counts).astype(np.float64)
|
|
|
|
t_quantiles /= t_quantiles[-1]
|
|
|
|
|
|
|
|
# interpolate linearly to find the pixel values in the template image
|
|
|
|
# that correspond most closely to the quantiles in the source image
|
|
|
|
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
|
|
|
|
|
|
|
|
return interp_t_values[bin_idx].reshape(oldshape)
|
|
|
|
|
|
|
|
def pansharpen(im_ms, im_pan, cloud_mask, plot_bool):
|
|
|
|
"""
|
|
|
|
Pansharpens a multispectral image (3D), using the panchromatic band (2D)
|
|
|
|
and a cloud mask
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im_ms: np.ndarray
|
|
|
|
Multispectral image to pansharpen (3D)
|
|
|
|
im_pan: np.ndarray
|
|
|
|
Panchromatic band (2D)
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
im_ms_ps: np.ndarray
|
|
|
|
Pansharpened multisoectral image (3D)
|
|
|
|
"""
|
|
|
|
|
|
|
|
# reshape image into vector and apply cloud mask
|
|
|
|
vec = im_ms.reshape(im_ms.shape[0] * im_ms.shape[1], im_ms.shape[2])
|
|
|
|
vec_mask = cloud_mask.reshape(im_ms.shape[0] * im_ms.shape[1])
|
|
|
|
vec = vec[~vec_mask, :]
|
|
|
|
# apply PCA to RGB bands
|
|
|
|
pca = decomposition.PCA()
|
|
|
|
vec_pcs = pca.fit_transform(vec)
|
|
|
|
|
|
|
|
# replace 1st PC with pan band (after matching histograms)
|
|
|
|
vec_pan = im_pan.reshape(im_pan.shape[0] * im_pan.shape[1])
|
|
|
|
vec_pan = vec_pan[~vec_mask]
|
|
|
|
|
|
|
|
# plt.figure()
|
|
|
|
# ax1 = plt.subplot(131)
|
|
|
|
# plt.imshow(im_pan, cmap='gray')
|
|
|
|
# plt.title('Pan band')
|
|
|
|
# plt.subplot(132, sharex=ax1, sharey=ax1)
|
|
|
|
# plt.imshow(vec_pcs[:,0].reshape(im_pan.shape[0],im_pan.shape[1]), cmap='gray')
|
|
|
|
# plt.title('PC1')
|
|
|
|
# plt.subplot(133, sharex=ax1, sharey=ax1)
|
|
|
|
# plt.imshow(hist_match(vec_pan, vec_pcs[:,0]).reshape(im_pan.shape[0],im_pan.shape[1]), cmap='gray')
|
|
|
|
# plt.title('Pan band histmatched')
|
|
|
|
#
|
|
|
|
# plt.figure()
|
|
|
|
# plt.hist(hist_match(vec_pan, vec_pcs[:,0]), bins=300)
|
|
|
|
# plt.hist(vec_pcs[:,0], bins=300, alpha=0.5)
|
|
|
|
# plt.hist(vec_pan, bins=300, alpha=0.5)
|
|
|
|
# plt.draw()
|
|
|
|
|
|
|
|
vec_pcs[:,0] = hist_match(vec_pan, vec_pcs[:,0])
|
|
|
|
vec_ms_ps = pca.inverse_transform(vec_pcs)
|
|
|
|
|
|
|
|
# reshape vector into image
|
|
|
|
vec_ms_ps_full = np.ones((len(vec_mask), im_ms.shape[2])) * np.nan
|
|
|
|
vec_ms_ps_full[~vec_mask,:] = vec_ms_ps
|
|
|
|
im_ms_ps = vec_ms_ps_full.reshape(im_ms.shape[0], im_ms.shape[1], im_ms.shape[2])
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
ax1 = plt.subplot(121)
|
|
|
|
plt.imshow(rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False))
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Original')
|
|
|
|
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
|
|
|
|
plt.imshow(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False))
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Pansharpened')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
return im_ms_ps
|
|
|
|
|
|
|
|
def nd_index(im1, im2, cloud_mask, plot_bool):
|
|
|
|
"""
|
|
|
|
Computes normalised difference index on 2 images (2D), given a cloud mask (2D)
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im1, im2: np.ndarray
|
|
|
|
Images (2D) with which to calculate the ND index
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
im_nd: np.ndarray
|
|
|
|
|
|
|
|
Image (2D) containing the ND index
|
|
|
|
"""
|
|
|
|
vec_mask = cloud_mask.reshape(im1.shape[0] * im1.shape[1])
|
|
|
|
vec_nd = np.ones(len(vec_mask)) * np.nan
|
|
|
|
vec1 = im1.reshape(im1.shape[0] * im1.shape[1])
|
|
|
|
vec2 = im2.reshape(im2.shape[0] * im2.shape[1])
|
|
|
|
temp = np.divide(vec1[~vec_mask] - vec2[~vec_mask],
|
|
|
|
vec1[~vec_mask] + vec2[~vec_mask])
|
|
|
|
vec_nd[~vec_mask] = temp
|
|
|
|
im_nd = vec_nd.reshape(im1.shape[0], im1.shape[1])
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
plt.figure()
|
|
|
|
plt.imshow(im_nd, cmap='seismic')
|
|
|
|
plt.colorbar()
|
|
|
|
plt.title('Normalised index')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
return im_nd
|
|
|
|
|
|
|
|
def find_wl_contours(im_ndwi, cloud_mask, plot_bool):
|
|
|
|
"""
|
|
|
|
Finds the water line by thresholding the Normalized Difference Water Index and applying the Marching
|
|
|
|
Squares Algorithm
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im_ndwi: np.ndarray
|
|
|
|
Image (2D) with the NDWI (water index)
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
contours_wl: list of np.arrays
|
|
|
|
contains the (row,column) coordinates of the contour lines
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# reshape image to vector
|
|
|
|
vec_ndwi = im_ndwi.reshape(im_ndwi.shape[0] * im_ndwi.shape[1])
|
|
|
|
vec_mask = cloud_mask.reshape(cloud_mask.shape[0] * cloud_mask.shape[1])
|
|
|
|
vec = vec_ndwi[~vec_mask]
|
|
|
|
# apply otsu's threshold
|
|
|
|
t_otsu = filters.threshold_otsu(vec)
|
|
|
|
# use Marching Squares algorithm to detect contours on ndwi image
|
|
|
|
contours = measure.find_contours(im_ndwi, t_otsu)
|
|
|
|
|
|
|
|
# remove contour points that are nans
|
|
|
|
contours_nonans = []
|
|
|
|
for k in range(len(contours)):
|
|
|
|
if np.any(np.isnan(contours[k])):
|
|
|
|
index_nan = np.where(np.isnan(contours[k]))[0]
|
|
|
|
contours_temp = np.delete(contours[k], index_nan, axis=0)
|
|
|
|
if len(contours_temp) > 1:
|
|
|
|
contours_nonans.append(contours_temp)
|
|
|
|
else:
|
|
|
|
contours_nonans.append(contours[k])
|
|
|
|
contours = contours_nonans
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
# plot otsu's histogram segmentation
|
|
|
|
plt.figure()
|
|
|
|
vals = plt.hist(vec, bins=200)
|
|
|
|
plt.plot([t_otsu, t_otsu],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
|
|
|
|
plt.legend()
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
# plot the water line contours on top of water index
|
|
|
|
plt.figure()
|
|
|
|
plt.imshow(im_ndwi, cmap='seismic')
|
|
|
|
plt.colorbar()
|
|
|
|
for i,contour in enumerate(contours): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
|
|
|
|
plt.axis('image')
|
|
|
|
plt.title('Detected water lines')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
return contours
|
|
|
|
|
|
|
|
def convert_pix2world(points, crs_vec):
|
|
|
|
"""
|
|
|
|
Converts pixel coordinates (row,columns) to world projected coordinates
|
|
|
|
performing an affine transformation
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
points: np.ndarray or list of np.ndarray
|
|
|
|
array with 2 columns (rows first and columns second)
|
|
|
|
crs_vec: np.ndarray
|
|
|
|
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
points_converted: np.ndarray or list of np.ndarray
|
|
|
|
converted coordinates, first columns with X and second column with Y
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# make affine transformation matrix
|
|
|
|
aff_mat = np.array([[crs_vec[1], crs_vec[2], crs_vec[0]],
|
|
|
|
[crs_vec[4], crs_vec[5], crs_vec[3]],
|
|
|
|
[0, 0, 1]])
|
|
|
|
# create affine transformation
|
|
|
|
tform = transform.AffineTransform(aff_mat)
|
|
|
|
|
|
|
|
if type(points) is list:
|
|
|
|
points_converted = []
|
|
|
|
# iterate over the list
|
|
|
|
for i, arr in enumerate(points):
|
|
|
|
tmp = arr[:,[1,0]]
|
|
|
|
points_converted.append(tform(tmp))
|
|
|
|
|
|
|
|
elif type(points) is np.ndarray:
|
|
|
|
tmp = points[:,[1,0]]
|
|
|
|
points_converted = tform(tmp)
|
|
|
|
|
|
|
|
else:
|
|
|
|
print('invalid input type')
|
|
|
|
raise
|
|
|
|
|
|
|
|
return points_converted
|
|
|
|
|
|
|
|
def convert_world2pix(points, crs_vec):
|
|
|
|
"""
|
|
|
|
Converts world projected coordinates (X,Y) to image coordinates (row,column)
|
|
|
|
performing an affine transformation
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
points: np.ndarray or list of np.ndarray
|
|
|
|
array with 2 columns (rows first and columns second)
|
|
|
|
crs_vec: np.ndarray
|
|
|
|
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
points_converted: np.ndarray or list of np.ndarray
|
|
|
|
converted coordinates, first columns with row and second column with column
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# make affine transformation matrix
|
|
|
|
aff_mat = np.array([[crs_vec[1], crs_vec[2], crs_vec[0]],
|
|
|
|
[crs_vec[4], crs_vec[5], crs_vec[3]],
|
|
|
|
[0, 0, 1]])
|
|
|
|
# create affine transformation
|
|
|
|
tform = transform.AffineTransform(aff_mat)
|
|
|
|
|
|
|
|
if type(points) is list:
|
|
|
|
points_converted = []
|
|
|
|
# iterate over the list
|
|
|
|
for i, arr in enumerate(points):
|
|
|
|
points_converted.append(tform.inverse(points))
|
|
|
|
|
|
|
|
elif type(points) is np.ndarray:
|
|
|
|
points_converted = tform.inverse(points)
|
|
|
|
|
|
|
|
else:
|
|
|
|
print('invalid input type')
|
|
|
|
raise
|
|
|
|
|
|
|
|
return points_converted
|
|
|
|
|
|
|
|
|
|
|
|
def convert_epsg(points, epsg_in, epsg_out):
|
|
|
|
"""
|
|
|
|
Converts from one spatial reference to another using the epsg codes
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
points: np.ndarray or list of np.ndarray
|
|
|
|
array with 2 columns (rows first and columns second)
|
|
|
|
epsg_in: int
|
|
|
|
epsg code of the spatial reference in which the input is
|
|
|
|
epsg_out: int
|
|
|
|
epsg code of the spatial reference in which the output will be
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
points_converted: np.ndarray or list of np.ndarray
|
|
|
|
converted coordinates
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# define input and output spatial references
|
|
|
|
inSpatialRef = osr.SpatialReference()
|
|
|
|
inSpatialRef.ImportFromEPSG(epsg_in)
|
|
|
|
outSpatialRef = osr.SpatialReference()
|
|
|
|
outSpatialRef.ImportFromEPSG(epsg_out)
|
|
|
|
# create a coordinates transform
|
|
|
|
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
|
|
|
|
# transform points
|
|
|
|
if type(points) is list:
|
|
|
|
points_converted = []
|
|
|
|
# iterate over the list
|
|
|
|
for i, arr in enumerate(points):
|
|
|
|
points_converted.append(np.array(coordTransform.TransformPoints(arr)))
|
|
|
|
|
|
|
|
elif type(points) is np.ndarray:
|
|
|
|
points_converted = np.array(coordTransform.TransformPoints(points))
|
|
|
|
|
|
|
|
else:
|
|
|
|
print('invalid input type')
|
|
|
|
raise
|
|
|
|
|
|
|
|
return points_converted
|
|
|
|
|
|
|
|
def classify_sand_unsupervised(im_ms_ps, im_pan, cloud_mask, wl_pix, buffer_size, min_beach_size, plot_bool):
|
|
|
|
"""
|
|
|
|
Classifies sand pixels using an unsupervised algorithm (Kmeans)
|
|
|
|
Set buffer size to False if you want to classify the entire image,
|
|
|
|
otherwise buffer size defines the buffer around the shoreline in which
|
|
|
|
pixels are considered for classification.
|
|
|
|
This classification is not robust and is only used to train a supervised algorithm
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im_ms_ps: np.ndarray
|
|
|
|
Pansharpened RGB + downsampled NIR and SWIR
|
|
|
|
im_pan:
|
|
|
|
Panchromatic band
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
wl_pix: list of np.ndarray
|
|
|
|
list of arrays containig the pixel coordinates of the water line
|
|
|
|
buffer_size: int or False
|
|
|
|
radius of the disk used to create a buffer around the water line
|
|
|
|
when False, the entire image is considered for kmeans
|
|
|
|
min_beach_size: int
|
|
|
|
minimum number of connected pixels belonging to a single beach
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
im_sand: np.ndarray
|
|
|
|
2D binary image containing True where sand pixels are located
|
|
|
|
|
|
|
|
"""
|
|
|
|
# reshape the 2D images into vectors
|
|
|
|
vec_ms_ps = im_ms_ps.reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1], im_ms_ps.shape[2])
|
|
|
|
vec_pan = im_pan.reshape(im_pan.shape[0]*im_pan.shape[1])
|
|
|
|
vec_mask = cloud_mask.reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1])
|
|
|
|
# add B,G,R,NIR and pan bands to the vector of features
|
|
|
|
vec_features = np.zeros((vec_ms_ps.shape[0], 5))
|
|
|
|
vec_features[:,[0,1,2,3]] = vec_ms_ps[:,[0,1,2,3]]
|
|
|
|
vec_features[:,4] = vec_pan
|
|
|
|
|
|
|
|
if buffer_size:
|
|
|
|
# create binary image with ones where the detected water lines is
|
|
|
|
im_buffer = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1]))
|
|
|
|
for i, contour in enumerate(wl_pix):
|
|
|
|
indices = [(int(_[0]), int(_[1])) for _ in list(np.round(contour))]
|
|
|
|
for j, idx in enumerate(indices):
|
|
|
|
im_buffer[idx] = 1
|
|
|
|
# perform a dilation on the binary image
|
|
|
|
se = morphology.disk(buffer_size)
|
|
|
|
im_buffer = morphology.binary_dilation(im_buffer, se)
|
|
|
|
vec_buffer = (im_buffer == 1).reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1])
|
|
|
|
else:
|
|
|
|
vec_buffer = np.ones((vec_pan.shape[0]))
|
|
|
|
# add cloud mask to buffer
|
|
|
|
vec_buffer= np.logical_and(vec_buffer, ~vec_mask)
|
|
|
|
# perform kmeans (6 clusters)
|
|
|
|
kmeans = KMeans(n_clusters=6, random_state=0).fit(vec_features[vec_buffer,:])
|
|
|
|
labels = np.ones((len(vec_mask))) * np.nan
|
|
|
|
labels[vec_buffer] = kmeans.labels_
|
|
|
|
im_labels = labels.reshape(im_ms_ps.shape[0], im_ms_ps.shape[1])
|
|
|
|
# find the class with maximum reflection in the B,G,R,Pan
|
|
|
|
im_sand = im_labels == np.argmax(np.mean(kmeans.cluster_centers_[:,[0,1,2,4]], axis=1))
|
|
|
|
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
|
|
|
|
im_sand = morphology.binary_erosion(im_sand, morphology.disk(1))
|
|
|
|
# im_sand = morphology.binary_dilation(im_sand, morphology.disk(1))
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
im = np.copy(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False))
|
|
|
|
im[im_sand,0] = 0
|
|
|
|
im[im_sand,1] = 0
|
|
|
|
im[im_sand,2] = 1
|
|
|
|
plt.figure()
|
|
|
|
plt.imshow(im)
|
|
|
|
plt.axis('image')
|
|
|
|
plt.title('Sand classification')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
return im_sand
|
|
|
|
|
|
|
|
def classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool):
|
|
|
|
"""
|
|
|
|
Classifies every pixel in the image in one of 4 classes:
|
|
|
|
- sand --> label = 1
|
|
|
|
- whitewater (breaking waves and swash) --> label = 2
|
|
|
|
- water --> label = 3
|
|
|
|
- other (vegetation, buildings, rocks...) --> label = 0
|
|
|
|
|
|
|
|
The classifier is a Neural Network, trained with 7000 pixels for the class SAND and 1500 pixels for
|
|
|
|
each of the other classes. This is because the class of interest for my application is SAND and I
|
|
|
|
wanted to minimize the classification error for that class
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im_ms_ps: np.ndarray
|
|
|
|
Pansharpened RGB + downsampled NIR and SWIR
|
|
|
|
im_pan:
|
|
|
|
Panchromatic band
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
im_classif: np.ndarray
|
|
|
|
2D image containing labels
|
|
|
|
im_labels: np.ndarray of booleans
|
|
|
|
3D image containing a boolean image for each class (im_classif == label)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# load classifier
|
|
|
|
clf = joblib.load('functions/NeuralNet_classif.pkl')
|
|
|
|
|
|
|
|
# calculate features
|
|
|
|
n_features = 10
|
|
|
|
im_features = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1], n_features))
|
|
|
|
im_features[:,:,[0,1,2,3,4]] = im_ms_ps
|
|
|
|
im_features[:,:,5] = im_pan
|
|
|
|
im_features[:,:,6] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False) # (NIR-G)
|
|
|
|
im_features[:,:,7] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,2], cloud_mask, False) # ND(NIR-R)
|
|
|
|
im_features[:,:,8] = nd_index(im_ms_ps[:,:,0], im_ms_ps[:,:,2], cloud_mask, False) # ND(B-R)
|
|
|
|
im_features[:,:,9] = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False) # ND(SWIR-G)
|
|
|
|
# remove NaNs and clouds
|
|
|
|
vec_features = im_features.reshape((im_ms_ps.shape[0] * im_ms_ps.shape[1], n_features))
|
|
|
|
vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1])
|
|
|
|
vec_nan = np.any(np.isnan(vec_features), axis=1)
|
|
|
|
vec_mask = np.logical_or(vec_cloud, vec_nan)
|
|
|
|
vec_features = vec_features[~vec_mask, :]
|
|
|
|
# predict with NN classifier
|
|
|
|
labels = clf.predict(vec_features)
|
|
|
|
# recompose image
|
|
|
|
vec_classif = np.zeros((cloud_mask.shape[0]*cloud_mask.shape[1]))
|
|
|
|
vec_classif[~vec_mask] = labels
|
|
|
|
im_classif = vec_classif.reshape((im_ms_ps.shape[0], im_ms_ps.shape[1]))
|
|
|
|
|
|
|
|
# labels
|
|
|
|
im_sand = im_classif == 1
|
|
|
|
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
|
|
|
|
im_swash = im_classif == 2
|
|
|
|
im_water = im_classif == 3
|
|
|
|
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
# display on top of pansharpened RGB
|
|
|
|
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
|
|
|
im = np.copy(im_display)
|
|
|
|
# define colours for plot
|
|
|
|
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
|
|
|
|
for k in range(0,im_labels.shape[2]):
|
|
|
|
im[im_labels[:,:,k],0] = colours[k,0]
|
|
|
|
im[im_labels[:,:,k],1] = colours[k,1]
|
|
|
|
im[im_labels[:,:,k],2] = colours[k,2]
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
ax1 = plt.subplot(121)
|
|
|
|
plt.imshow(im_display)
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Image')
|
|
|
|
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
|
|
|
|
plt.imshow(im)
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('NN classifier')
|
|
|
|
mng = plt.get_current_fig_manager()
|
|
|
|
mng.window.showMaximized()
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.draw()
|
|
|
|
|
|
|
|
return im_classif, im_labels
|
|
|
|
|
|
|
|
def classify_image_NN_nopan(im_ms_ps, cloud_mask, min_beach_size, plot_bool):
|
|
|
|
"""
|
|
|
|
Classifies every pixel in the image in one of 4 classes:
|
|
|
|
- sand --> label = 1
|
|
|
|
- whitewater (breaking waves and swash) --> label = 2
|
|
|
|
- water --> label = 3
|
|
|
|
- other (vegetation, buildings, rocks...) --> label = 0
|
|
|
|
|
|
|
|
The classifier is a Neural Network, trained with 7000 pixels for the class SAND and 1500 pixels for
|
|
|
|
each of the other classes. This is because the class of interest for my application is SAND and I
|
|
|
|
wanted to minimize the classification error for that class
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im_ms_ps: np.ndarray
|
|
|
|
Pansharpened RGB + downsampled NIR and SWIR
|
|
|
|
im_pan:
|
|
|
|
Panchromatic band
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
im_classif: np.ndarray
|
|
|
|
2D image containing labels
|
|
|
|
im_labels: np.ndarray of booleans
|
|
|
|
3D image containing a boolean image for each class (im_classif == label)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# load classifier
|
|
|
|
clf = joblib.load('functions/NeuralNet_classif_nopan.pkl')
|
|
|
|
|
|
|
|
# calculate features
|
|
|
|
n_features = 9
|
|
|
|
im_features = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1], n_features))
|
|
|
|
im_features[:,:,[0,1,2,3,4]] = im_ms_ps
|
|
|
|
im_features[:,:,5] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False) # (NIR-G)
|
|
|
|
im_features[:,:,6] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,2], cloud_mask, False) # ND(NIR-R)
|
|
|
|
im_features[:,:,7] = nd_index(im_ms_ps[:,:,0], im_ms_ps[:,:,2], cloud_mask, False) # ND(B-R)
|
|
|
|
im_features[:,:,8] = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False) # ND(SWIR-G)
|
|
|
|
# remove NaNs and clouds
|
|
|
|
vec_features = im_features.reshape((im_ms_ps.shape[0] * im_ms_ps.shape[1], n_features))
|
|
|
|
vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1])
|
|
|
|
vec_nan = np.any(np.isnan(vec_features), axis=1)
|
|
|
|
vec_mask = np.logical_or(vec_cloud, vec_nan)
|
|
|
|
vec_features = vec_features[~vec_mask, :]
|
|
|
|
# predict with NN classifier
|
|
|
|
labels = clf.predict(vec_features)
|
|
|
|
|
|
|
|
# recompose image
|
|
|
|
vec_classif = np.zeros((cloud_mask.shape[0]*cloud_mask.shape[1]))
|
|
|
|
vec_classif[~vec_mask] = labels
|
|
|
|
im_classif = vec_classif.reshape((im_ms_ps.shape[0], im_ms_ps.shape[1]))
|
|
|
|
|
|
|
|
# labels
|
|
|
|
im_sand = im_classif == 1
|
|
|
|
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
|
|
|
|
im_swash = im_classif == 2
|
|
|
|
im_water = im_classif == 3
|
|
|
|
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
# display on top of pansharpened RGB
|
|
|
|
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
|
|
|
im = np.copy(im_display)
|
|
|
|
# define colours for plot
|
|
|
|
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
|
|
|
|
for k in range(0,im_labels.shape[2]):
|
|
|
|
im[im_labels[:,:,k],0] = colours[k,0]
|
|
|
|
im[im_labels[:,:,k],1] = colours[k,1]
|
|
|
|
im[im_labels[:,:,k],2] = colours[k,2]
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
ax1 = plt.subplot(121)
|
|
|
|
plt.imshow(im_display)
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('Image')
|
|
|
|
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
|
|
|
|
plt.imshow(im)
|
|
|
|
plt.axis('off')
|
|
|
|
plt.title('NN classifier')
|
|
|
|
mng = plt.get_current_fig_manager()
|
|
|
|
mng.window.showMaximized()
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.draw()
|
|
|
|
|
|
|
|
return im_classif, im_labels
|
|
|
|
|
|
|
|
def find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size, plot_bool):
|
|
|
|
"""
|
|
|
|
New method for extracting shorelines (more robust)
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im_ms_ps: np.ndarray
|
|
|
|
Pansharpened RGB + downsampled NIR and SWIR
|
|
|
|
im_labels: np.ndarray
|
|
|
|
3D image containing a boolean image for each class in the order (sand, swash, water)
|
|
|
|
cloud_mask: np.ndarray
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
buffer_size: int
|
|
|
|
size of the buffer around the sandy beach
|
|
|
|
plot_bool: boolean
|
|
|
|
True if plot is wanted
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
contours_wi: list of np.arrays
|
|
|
|
contains the (row,column) coordinates of the contour lines extracted with the Water Index
|
|
|
|
contours_mwi: list of np.arrays
|
|
|
|
contains the (row,column) coordinates of the contour lines extracted with the Modified Water Index
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
nrows = cloud_mask.shape[0]
|
|
|
|
ncols = cloud_mask.shape[1]
|
|
|
|
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
|
|
|
|
|
|
|
# calculate Normalized Difference Modified Water Index (SWIR - G)
|
|
|
|
im_mwi = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False)
|
|
|
|
# calculate Normalized Difference Modified Water Index (NIR - G)
|
|
|
|
im_wi = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False)
|
|
|
|
# stack indices together
|
|
|
|
im_ind = np.stack((im_wi, im_mwi), axis=-1)
|
|
|
|
vec_ind = im_ind.reshape(nrows*ncols,2)
|
|
|
|
|
|
|
|
# process labels
|
|
|
|
vec_sand = im_labels[:,:,0].reshape(ncols*nrows)
|
|
|
|
vec_swash = im_labels[:,:,1].reshape(ncols*nrows)
|
|
|
|
vec_water = im_labels[:,:,2].reshape(ncols*nrows)
|
|
|
|
|
|
|
|
# create a buffer around the sandy beach
|
|
|
|
se = morphology.disk(buffer_size)
|
|
|
|
im_buffer = morphology.binary_dilation(im_labels[:,:,0], se)
|
|
|
|
vec_buffer = im_buffer.reshape(nrows*ncols)
|
|
|
|
|
|
|
|
# select water/sand/swash pixels that are within the buffer
|
|
|
|
int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:]
|
|
|
|
int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:]
|
|
|
|
int_swash = vec_ind[np.logical_and(vec_buffer,vec_swash),:]
|
|
|
|
|
|
|
|
# threshold the sand/water intensities
|
|
|
|
int_all = np.append(int_water,int_sand, axis=0)
|
|
|
|
t_mwi = filters.threshold_otsu(int_all[:,0])
|
|
|
|
t_wi = filters.threshold_otsu(int_all[:,1])
|
|
|
|
|
|
|
|
# find contour with MS algorithm
|
|
|
|
im_wi_buffer = np.copy(im_wi)
|
|
|
|
im_wi_buffer[~im_buffer] = np.nan
|
|
|
|
im_mwi_buffer = np.copy(im_mwi)
|
|
|
|
im_mwi_buffer[~im_buffer] = np.nan
|
|
|
|
contours_wi = measure.find_contours(im_wi_buffer, t_wi)
|
|
|
|
contours_mwi = measure.find_contours(im_mwi, t_mwi) # WARNING (on entire image)
|
|
|
|
|
|
|
|
# remove contour points that are nans (around clouds)
|
|
|
|
|
|
|
|
contours = contours_wi
|
|
|
|
contours_nonans = []
|
|
|
|
for k in range(len(contours)):
|
|
|
|
if np.any(np.isnan(contours[k])):
|
|
|
|
index_nan = np.where(np.isnan(contours[k]))[0]
|
|
|
|
contours_temp = np.delete(contours[k], index_nan, axis=0)
|
|
|
|
if len(contours_temp) > 1:
|
|
|
|
contours_nonans.append(contours_temp)
|
|
|
|
else:
|
|
|
|
contours_nonans.append(contours[k])
|
|
|
|
contours_wi = contours_nonans
|
|
|
|
|
|
|
|
contours = contours_mwi
|
|
|
|
contours_nonans = []
|
|
|
|
for k in range(len(contours)):
|
|
|
|
if np.any(np.isnan(contours[k])):
|
|
|
|
index_nan = np.where(np.isnan(contours[k]))[0]
|
|
|
|
contours_temp = np.delete(contours[k], index_nan, axis=0)
|
|
|
|
if len(contours_temp) > 1:
|
|
|
|
contours_nonans.append(contours_temp)
|
|
|
|
else:
|
|
|
|
contours_nonans.append(contours[k])
|
|
|
|
contours_mwi = contours_nonans
|
|
|
|
|
|
|
|
if plot_bool:
|
|
|
|
|
|
|
|
im = np.copy(im_display)
|
|
|
|
# define colours for plot
|
|
|
|
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
|
|
|
|
for k in range(0,im_labels.shape[2]):
|
|
|
|
im[im_labels[:,:,k],0] = colours[k,0]
|
|
|
|
im[im_labels[:,:,k],1] = colours[k,1]
|
|
|
|
im[im_labels[:,:,k],2] = colours[k,2]
|
|
|
|
|
|
|
|
fig = plt.figure()
|
|
|
|
gs = gridspec.GridSpec(3, 3, height_ratios=[1, 1, 3])
|
|
|
|
|
|
|
|
ax1 = fig.add_subplot(gs[0,:])
|
|
|
|
vals = plt.hist(int_water[:,0], bins=100, label='water')
|
|
|
|
plt.hist(int_sand[:,0], bins=100, alpha=0.5, label='sand')
|
|
|
|
plt.hist(int_swash[:,0], bins=100, alpha=0.5, label='swash')
|
|
|
|
plt.plot([t_wi, t_wi], [0, np.max(vals[0])], 'r-')
|
|
|
|
plt.legend()
|
|
|
|
plt.title('Water Index NIR-G')
|
|
|
|
|
|
|
|
ax2 = fig.add_subplot(gs[1,:], sharex=ax1)
|
|
|
|
vals = plt.hist(int_water[:,1], bins=100, label='water')
|
|
|
|
plt.hist(int_sand[:,1], bins=100, alpha=0.5, label='sand')
|
|
|
|
plt.hist(int_swash[:,1], bins=100, alpha=0.5, label='swash')
|
|
|
|
plt.plot([t_mwi, t_mwi], [0, np.max(vals[0])], 'r-')
|
|
|
|
plt.legend()
|
|
|
|
plt.title('Modified Water Index SWIR-G')
|
|
|
|
|
|
|
|
ax3 = fig.add_subplot(gs[2,0])
|
|
|
|
plt.imshow(im)
|
|
|
|
for i,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
|
|
|
|
for i,contour in enumerate(contours_wi): plt.plot(contour[:, 1], contour[:, 0], linestyle='--', linewidth=1, color='w')
|
|
|
|
plt.grid(False)
|
|
|
|
plt.xticks([])
|
|
|
|
plt.yticks([])
|
|
|
|
|
|
|
|
ax4 = fig.add_subplot(gs[2,1], sharex=ax3, sharey=ax3)
|
|
|
|
plt.imshow(im_display)
|
|
|
|
for i,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
|
|
|
|
for i,contour in enumerate(contours_wi): plt.plot(contour[:, 1], contour[:, 0], linestyle='--', linewidth=1, color='w')
|
|
|
|
plt.grid(False)
|
|
|
|
plt.xticks([])
|
|
|
|
plt.yticks([])
|
|
|
|
|
|
|
|
ax5 = fig.add_subplot(gs[2,2], sharex=ax3, sharey=ax3)
|
|
|
|
plt.imshow(im_mwi, cmap='seismic')
|
|
|
|
for i,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
|
|
|
|
for i,contour in enumerate(contours_wi): plt.plot(contour[:, 1], contour[:, 0], linestyle='--', linewidth=1, color='w')
|
|
|
|
plt.grid(False)
|
|
|
|
plt.xticks([])
|
|
|
|
plt.yticks([])
|
|
|
|
|
|
|
|
# plt.gcf().set_size_inches(17.99,7.55)
|
|
|
|
mng = plt.get_current_fig_manager()
|
|
|
|
mng.window.showMaximized()
|
|
|
|
plt.gcf().set_tight_layout(True)
|
|
|
|
plt.draw()
|
|
|
|
|
|
|
|
return contours_wi, contours_mwi
|
|
|
|
|
|
|
|
def compare_sds(dates_sds, chain_sds, topo_profiles, mod=0, mindays=5):
|
|
|
|
"""
|
|
|
|
Compare sds with groundtruth data from topographic surveys / argus shorelines
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
dates_sds: list
|
|
|
|
list of dates corresponding to each row in chain_sds
|
|
|
|
chain_sds: np.ndarray
|
|
|
|
array with time series of chainage for each transect (each transect is one column)
|
|
|
|
topo_profiles: dict
|
|
|
|
dict containing the dates and chainage of the groundtruth
|
|
|
|
mod: 0 or 1
|
|
|
|
0 for linear interpolation between 2 closest surveys, 1 for only nearest neighbour
|
|
|
|
min_days: int
|
|
|
|
minimum number of days for which the data can be compared
|
|
|
|
|
|
|
|
Returns: -----------
|
|
|
|
stats: dict
|
|
|
|
contains all the statistics of the comparison
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# create 3 figures
|
|
|
|
fig1 = plt.figure()
|
|
|
|
gs1 = gridspec.GridSpec(chain_sds.shape[1], 1)
|
|
|
|
fig2 = plt.figure()
|
|
|
|
gs2 = gridspec.GridSpec(2, chain_sds.shape[1])
|
|
|
|
fig3 = plt.figure()
|
|
|
|
gs3 = gridspec.GridSpec(2,1)
|
|
|
|
|
|
|
|
dates_sds_num = np.array([_.toordinal() for _ in dates_sds])
|
|
|
|
stats = dict([])
|
|
|
|
data_fin = dict([])
|
|
|
|
|
|
|
|
# for each transect compare and plot the data
|
|
|
|
for i in range(chain_sds.shape[1]):
|
|
|
|
|
|
|
|
pfname = list(topo_profiles.keys())[i]
|
|
|
|
stats[pfname] = dict([])
|
|
|
|
data_fin[pfname] = dict([])
|
|
|
|
|
|
|
|
dates_sur = topo_profiles[pfname]['dates']
|
|
|
|
chain_sur = topo_profiles[pfname]['chainage']
|
|
|
|
|
|
|
|
# convert to datenum
|
|
|
|
dates_sur_num = np.array([_.toordinal() for _ in dates_sur])
|
|
|
|
|
|
|
|
chain_sur_interp = []
|
|
|
|
diff_days = []
|
|
|
|
|
|
|
|
for j, satdate in enumerate(dates_sds_num):
|
|
|
|
|
|
|
|
temp_diff = satdate - dates_sur_num
|
|
|
|
|
|
|
|
if mod==0:
|
|
|
|
# select measurement before and after sat image date and interpolate
|
|
|
|
|
|
|
|
ind_before = np.where(temp_diff == temp_diff[temp_diff > 0][-1])[0]
|
|
|
|
if ind_before == len(temp_diff)-1:
|
|
|
|
chain_sur_interp.append(np.nan)
|
|
|
|
diff_days.append(np.abs(satdate-dates_sur_num[ind_before])[0])
|
|
|
|
continue
|
|
|
|
ind_after = np.where(temp_diff == temp_diff[temp_diff < 0][0])[0]
|
|
|
|
tempx = np.zeros(2)
|
|
|
|
tempx[0] = dates_sur_num[ind_before]
|
|
|
|
tempx[1] = dates_sur_num[ind_after]
|
|
|
|
tempy = np.zeros(2)
|
|
|
|
tempy[0] = chain_sur[ind_before]
|
|
|
|
tempy[1] = chain_sur[ind_after]
|
|
|
|
diff_days.append(np.abs(np.max([satdate-tempx[0], satdate-tempx[1]])))
|
|
|
|
# interpolate
|
|
|
|
f = interpolate.interp1d(tempx, tempy)
|
|
|
|
chain_sur_interp.append(f(satdate))
|
|
|
|
|
|
|
|
elif mod==1:
|
|
|
|
# select the closest measurement
|
|
|
|
|
|
|
|
idx_closest = find_indices(np.abs(temp_diff), lambda e: e == np.min(np.abs(temp_diff)))[0]
|
|
|
|
diff_days.append(np.abs(satdate-dates_sur_num[idx_closest]))
|
|
|
|
if diff_days[j] > mindays:
|
|
|
|
chain_sur_interp.append(np.nan)
|
|
|
|
else:
|
|
|
|
chain_sur_interp.append(chain_sur[idx_closest])
|
|
|
|
|
|
|
|
chain_sur_interp = np.array(chain_sur_interp)
|
|
|
|
|
|
|
|
# remove nan values
|
|
|
|
idx_sur_nan = ~np.isnan(chain_sur_interp)
|
|
|
|
idx_sat_nan = ~np.isnan(chain_sds[:,i])
|
|
|
|
idx_nan = np.logical_and(idx_sur_nan, idx_sat_nan)
|
|
|
|
|
|
|
|
# groundtruth and sds
|
|
|
|
chain_sur_fin = chain_sur_interp[idx_nan]
|
|
|
|
chain_sds_fin = chain_sds[idx_nan,i]
|
|
|
|
dates_fin = [k for (k, v) in zip(dates_sds, idx_nan) if v]
|
|
|
|
diff_chain = chain_sur_fin - chain_sds_fin
|
|
|
|
|
|
|
|
# calculate statistics
|
|
|
|
rmse = np.sqrt(np.nanmean((diff_chain)**2))
|
|
|
|
mean = np.nanmean(diff_chain)
|
|
|
|
std = np.nanstd(diff_chain)
|
|
|
|
q90 = np.percentile(np.abs(diff_chain), 90)
|
|
|
|
|
|
|
|
# store data
|
|
|
|
stats[pfname]['rmse'] = rmse
|
|
|
|
stats[pfname]['mean'] = mean
|
|
|
|
stats[pfname]['std'] = std
|
|
|
|
stats[pfname]['q90'] = q90
|
|
|
|
stats[pfname]['diffdays'] = diff_days
|
|
|
|
|
|
|
|
data_fin[pfname]['dates'] = dates_fin
|
|
|
|
data_fin[pfname]['sds'] = chain_sds_fin
|
|
|
|
data_fin[pfname]['survey'] = chain_sur_fin
|
|
|
|
|
|
|
|
# make time-series plot
|
|
|
|
plt.figure(fig1.number)
|
|
|
|
ax = fig1.add_subplot(gs1[i,0])
|
|
|
|
plt.plot(dates_sur, chain_sur, 'o-', color='C1', markersize=4, label='survey all')
|
|
|
|
plt.plot(dates_fin, chain_sur_fin, 'o', color=[0.3, 0.3, 0.3], markersize=2, label='survey interp')
|
|
|
|
plt.plot(dates_fin, chain_sds_fin, 'o--', color='b', markersize=4, label='SDS')
|
|
|
|
plt.title(pfname, fontweight='bold')
|
|
|
|
plt.xlim([dates_sds[0], dates_sds[-1]])
|
|
|
|
plt.ylabel('chainage [m]')
|
|
|
|
|
|
|
|
# make scatter plot
|
|
|
|
plt.figure(fig2.number)
|
|
|
|
ax1 = fig2.add_subplot(gs2[0,i])
|
|
|
|
plt.axis('equal')
|
|
|
|
plt.plot(chain_sur_fin, chain_sds_fin, 'ko', markersize=4, markerfacecolor='w', alpha=0.7)
|
|
|
|
xmax = np.max([np.nanmax(chain_sds_fin),np.nanmax(chain_sur_fin)])
|
|
|
|
xmin = np.min([np.nanmin(chain_sds_fin),np.nanmin(chain_sur_fin)])
|
|
|
|
ymax = np.max([np.nanmax(chain_sds_fin),np.nanmax(chain_sur_fin)])
|
|
|
|
ymin = np.min([np.nanmin(chain_sds_fin),np.nanmin(chain_sur_fin)])
|
|
|
|
plt.plot([xmin, xmax], [ymin, ymax], 'r--')
|
|
|
|
correlation = np.corrcoef(chain_sur_fin, chain_sds_fin)[0,1]
|
|
|
|
str_corr = 'r = %.2f' % (correlation)
|
|
|
|
plt.text(xmin, ymax, str_corr, bbox=dict(facecolor=[0.7,0.7,0.7], alpha=0.5), horizontalalignment='left')
|
|
|
|
plt.xlabel('chainage survey [m]')
|
|
|
|
plt.ylabel('chainage satellite [m]')
|
|
|
|
plt.title(pfname, fontweight='bold')
|
|
|
|
|
|
|
|
ax2 = fig2.add_subplot(gs2[1,i])
|
|
|
|
binwidth = 3
|
|
|
|
bins = np.arange(min(diff_chain), max(diff_chain) + binwidth, binwidth)
|
|
|
|
density = plt.hist(diff_chain, bins=bins, density=True, color=[0.8, 0.8, 0.8], edgecolor='k')
|
|
|
|
plt.xlim([-50, 50])
|
|
|
|
plt.xlabel('error [m]')
|
|
|
|
str_stats = ' rmse = %.1f\n mean = %.1f\n std = %.1f\n q90 = %.1f' % (rmse, mean, std, q90)
|
|
|
|
plt.text(15, np.max(density[0])-0.015, str_stats, bbox=dict(facecolor=[0.8,0.8,0.8], alpha=0.5), horizontalalignment='left', fontsize=10)
|
|
|
|
|
|
|
|
fig1.set_size_inches(19.2, 9.28)
|
|
|
|
fig1.set_tight_layout(True)
|
|
|
|
fig2.set_size_inches(19.2, 9.28)
|
|
|
|
fig2.set_tight_layout(True)
|
|
|
|
|
|
|
|
# plot all the data together
|
|
|
|
chain_sds_all = []
|
|
|
|
chain_sur_all = []
|
|
|
|
for i in range(chain_sds.shape[1]):
|
|
|
|
pfname = list(topo_profiles.keys())[i]
|
|
|
|
chain_sds_all = np.append(chain_sds_all,data_fin[pfname]['sds'])
|
|
|
|
chain_sur_all = np.append(chain_sur_all,data_fin[pfname]['survey'])
|
|
|
|
|
|
|
|
diff_chain_all = chain_sur_all - chain_sds_all
|
|
|
|
|
|
|
|
# calculate statistics
|
|
|
|
rmse = np.sqrt(np.nanmean((diff_chain_all)**2))
|
|
|
|
mean = np.nanmean(diff_chain_all)
|
|
|
|
std = np.nanstd(diff_chain_all)
|
|
|
|
q90 = np.percentile(np.abs(diff_chain_all), 90)
|
|
|
|
|
|
|
|
stats['all'] = {'rmse':rmse,'mean':mean,'std':std,'q90':q90}
|
|
|
|
|
|
|
|
# make plot with all datapoints (from all the transects)
|
|
|
|
plt.figure(fig3.number)
|
|
|
|
ax1 = fig3.add_subplot(gs3[0,0])
|
|
|
|
plt.axis('equal')
|
|
|
|
plt.plot(chain_sur_all, chain_sds_all, 'ko', markersize=4, markerfacecolor='w', alpha=0.7)
|
|
|
|
xmax = np.max([np.nanmax(chain_sds_all),np.nanmax(chain_sur_all)])
|
|
|
|
xmin = np.min([np.nanmin(chain_sds_all),np.nanmin(chain_sur_all)])
|
|
|
|
ymax = np.max([np.nanmax(chain_sds_all),np.nanmax(chain_sur_all)])
|
|
|
|
ymin = np.min([np.nanmin(chain_sds_all),np.nanmin(chain_sur_all)])
|
|
|
|
plt.plot([xmin, xmax], [ymin, ymax], 'r--')
|
|
|
|
correlation = np.corrcoef(chain_sur_all, chain_sds_all)[0,1]
|
|
|
|
str_corr = 'r = %.2f' % (correlation)
|
|
|
|
plt.text(xmin, ymax, str_corr, bbox=dict(facecolor=[0.7,0.7,0.7], alpha=0.5), horizontalalignment='left')
|
|
|
|
plt.xlabel('chainage survey [m]')
|
|
|
|
plt.ylabel('chainage satellite [m]')
|
|
|
|
plt.title(pfname, fontweight='bold')
|
|
|
|
|
|
|
|
ax2 = fig3.add_subplot(gs3[1,0])
|
|
|
|
binwidth = 3
|
|
|
|
bins = np.arange(min(diff_chain_all), max(diff_chain_all) + binwidth, binwidth)
|
|
|
|
density = plt.hist(diff_chain_all, bins=bins, density=True, color=[0.8, 0.8, 0.8], edgecolor='k')
|
|
|
|
plt.xlim([-50, 50])
|
|
|
|
plt.xlabel('error [m]')
|
|
|
|
str_stats = ' rmse = %.1f\n mean = %.1f\n std = %.1f\n q90 = %.1f' % (rmse, mean, std, q90)
|
|
|
|
plt.text(15, np.max(density[0])-0.015, str_stats, bbox=dict(facecolor=[0.8,0.8,0.8], alpha=0.5), horizontalalignment='left', fontsize=10)
|
|
|
|
fig3.set_size_inches(9.2, 9.28)
|
|
|
|
fig3.set_tight_layout(True)
|
|
|
|
|
|
|
|
return stats
|
|
|
|
|