You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
geetools_VH/time_coverage.py

222 lines
8.0 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Tue Mar 20 16:15:51 2018
@author: z5030440
"""
import os
7 years ago
import numpy as np
import matplotlib.pyplot as plt
7 years ago
import pdb
import ee
import matplotlib.dates as mdates
7 years ago
import matplotlib.cm as cm
from datetime import datetime, timedelta
import pickle
import pytz
7 years ago
import scipy.io as sio
import scipy.interpolate as interpolate
import statsmodels.api as sm
# my functions
import functions.utils as utils
import functions.sds as sds
7 years ago
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
plt.rcParams['axes.grid'] = True
plt.rcParams['figure.max_open_warning'] = 100
au_tz = pytz.timezone('Australia/Sydney')
# load quadbike dates and convert from datenum to datetime
7 years ago
filename = 'data\quadbike\survey_dates.mat'
filepath = os.path.join(os.getcwd(), filename)
dates_quad = sio.loadmat(filepath)['dates'] # matrix containing year, month, day
dates_quad = [datetime(dates_quad[i,0], dates_quad[i,1], dates_quad[i,2],
tzinfo=au_tz) for i in range(dates_quad.shape[0])]
# load timestamps from satellite images
satname = 'L8'
sitename = 'NARRA'
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'rb') as f:
output = pickle.load(f)
dates_l8 = output['t']
# convert to AEST
dates_l8 = [_.astimezone(au_tz) for _ in dates_l8]
# load wave data
filename = 'data\wave\SydneyProcessed.mat'
filepath = os.path.join(os.getcwd(), filename)
wave_data = sio.loadmat(filepath)
idx = utils.find_indices(wave_data['dates'][:,0], lambda e: e >= dates_l8[0].year and e <= dates_l8[-1].year)
hsig = np.array([wave_data['Hsig'][i][0] for i in idx])
wdir = np.array([wave_data['Wdir'][i][0] for i in idx])
dates_wave = [datetime(wave_data['dates'][i,0], wave_data['dates'][i,1],
wave_data['dates'][i,2], wave_data['dates'][i,3],
wave_data['dates'][i,4], wave_data['dates'][i,5],
tzinfo=au_tz) for i in idx]
#%% make a plot of all the dates
orange = [255/255,140/255,0]
blue = [0,191/255,255/255]
7 years ago
f = plt.figure()
months = mdates.MonthLocator()
month_fmt = mdates.DateFormatter('%b %Y')
days = mdates.DayLocator()
years = [2013,2014,2015,2016]
for k in range(len(years)):
sel_year = years[k]
ax = plt.subplot(4,1,k+1)
idx_year = utils.find_indices(dates_wave, lambda e : e.year >= sel_year and e.year <= sel_year)
plt.plot([dates_wave[i] for i in idx_year], [hsig[i] for i in idx_year], 'k-', linewidth=0.5)
hsigmax = np.nanmax([hsig[i] for i in idx_year])
cbool = True
for j in range(len(dates_quad)):
if dates_quad[j].year == sel_year:
if cbool:
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange, label='survey')
7 years ago
cbool = False
else:
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange)
7 years ago
cbool = True
for j in range(len(dates_l8)):
if dates_l8[j].year == sel_year:
if cbool:
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue, label='landsat8')
7 years ago
cbool = False
else:
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue)
7 years ago
if k == 3:
plt.legend()
plt.xlim((datetime(sel_year,1,1), datetime(sel_year,12,31, tzinfo=au_tz)))
plt.ylim((0, hsigmax))
plt.ylabel('Hs [m]')
ax.xaxis.set_major_locator = months
ax.xaxis.set_major_formatter(month_fmt)
f.subplots_adjust(hspace=0.2)
plt.draw()
#%% calculate days difference
7 years ago
diff_days = [ [(x - _).days for _ in dates_quad] for x in dates_l8]
max_diff = 5
idx_closest = [utils.find_indices(_, lambda e: abs(e) <= max_diff) for _ in diff_days]
dates_diff = []
for i in range(len(idx_closest)):
if not idx_closest[i]:
continue
7 years ago
elif len(idx_closest[i]) > 1:
idx_best = np.argmin(np.abs([diff_days[i][_] for _ in idx_closest[i]]))
dates_temp = [dates_quad[_] for _ in idx_closest[i]]
days_temp = [diff_days[i][_] for _ in idx_closest[i]]
dates_diff.append({"date sat": dates_l8[i],
"date quad": dates_temp[idx_best],
"days diff": days_temp[idx_best]})
else:
dates_diff.append({"date sat": dates_l8[i],
"date quad": dates_quad[idx_closest[i][0]],
"days diff": diff_days[i][idx_closest[i][0]]
})
np.mean([ np.abs(_['days diff']) for _ in dates_diff])
#%% compare shorelines
dist_thresh = 200 # maximum distance between an sds point and a narrabeen point
frac_smooth = 1./12 # fraction of the data used for smoothing (the bigger the smoother)
dist_buffer = 50 # buffer of points selected for interpolation
7 years ago
# load quadbike .mat files
foldername = 'data\quadbike\surveys3D'
folderpath = os.path.join(os.getcwd(), foldername)
filenames = os.listdir(folderpath)
# load the satellite shorelines
sl = output['shorelines']
# load narrabeen beach points (manually digitized)
with open(os.path.join(os.getcwd(), 'olddata', 'narra_beach' + '.pkl'), 'rb') as f:
narrabeach = pickle.load(f)
7 years ago
dates_quad = [datetime(int(_[6:10]), int(_[11:13]), int(_[14:16]), tzinfo= au_tz) for _ in filenames]
zav = []
7 years ago
for i in range(len(dates_diff)):
# select closest 3D survey
7 years ago
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).days for _ in dates_quad])))
survey3d = sio.loadmat(os.path.join(folderpath, filenames[idx_closest]))
xs = survey3d['x'].reshape(survey3d['x'].shape[0] * survey3d['x'].shape[1])
ys = survey3d['y'].reshape(survey3d['y'].shape[0] * survey3d['y'].shape[1])
zs = survey3d['z'].reshape(survey3d['z'].shape[0] * survey3d['z'].shape[1])
idx_nan = np.isnan(zs)
xs = xs[~idx_nan]
ys = ys[~idx_nan]
zs = zs[~idx_nan]
# smooth (LOWESS) satellite shoreline
idx_beach = [np.min(np.linalg.norm(sl[i][k,:] - narrabeach, axis=1)) < dist_thresh for k in range(sl[i].shape[0])]
sl_smooth = sm.nonparametric.lowess(sl[i][idx_beach,0],sl[i][idx_beach,1], frac=frac_smooth, it = 6)
sl_smooth = sl_smooth[:,[1,0]]
# make plot
7 years ago
plt.figure()
plt.axis('equal')
plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
7 years ago
label='quad data')
plt.plot(sl[i][idx_beach,0], sl[i][idx_beach,1], 'ko-', markersize=3)
plt.plot(sl_smooth[:,0], sl_smooth[:,1], 'ro-', markersize=3)
plt.xlabel('Eastings [m]')
plt.ylabel('Northings [m]')
plt.title('Local weighted scatterplot smoothing (LOWESS)')
7 years ago
plt.draw()
zq = np.zeros((sl_smooth.shape[0], 1))
for j in range(sl_smooth.shape[0]):
xq = sl_smooth[j,0]
yq = sl_smooth[j,1]
dist_q = np.linalg.norm(np.transpose(np.array([[xq - _ for _ in xs],[yq - _ for _ in ys]])), axis=1)
idx_buffer = dist_q <= dist_buffer
# plt.figure()
# plt.axis('equal')
# plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
# label='quad data')
# plt.plot(xs[idx_buffer], ys[idx_buffer], 'ko')
# plt.plot(xq,yq,'ro')
# plt.draw()
tck = interpolate.bisplrep(xs[idx_buffer], ys[idx_buffer], zs[idx_buffer])
zq[j] = interpolate.bisplev(xq, yq, tck)
zav.append(np.median(zq))
plt.figure()
plt.plot(sl_smooth[:,1], zq, 'ko-', markersize=5)
plt.plot([sl_smooth[0,1], sl_smooth[-1,1]], [zav[i], zav[i]], 'r--')
plt.xlabel('Northings [m]')
plt.ylabel('Elevation [mAHD]')
plt.title('Interpolated SDS elevation')
plt.draw()
#%%
i = 0
lowess = sm.nonparametric.lowess
x = sl[i][idx_beach,0]
y = sl[i][idx_beach,1]
sl_smooth = lowess(x,y, frac=1./15, it = 6)
plt.figure()
plt.axis('equal')
plt.scatter
plt.plot(x,y,'bo-', linewidth=2, marker='o',
color='b', label='original')
plt.plot(sl_smooth[:,1], sl_smooth[:,0], linewidth=2, marker='o',
color='r', label='smooth')
plt.legend()
plt.xlabel('Eastings [m]')
plt.ylabel('Northings [m]')
plt.title('Local weighted scatterplot smoothing (LOWESS)')
plt.draw()