forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
246 lines
9.3 KiB
Python
246 lines
9.3 KiB
Python
7 years ago
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
#==========================================================#
|
||
|
# Create a training data
|
||
|
#==========================================================#
|
||
|
|
||
|
# Initial settings
|
||
|
import os
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
import ee
|
||
|
import pdb
|
||
|
import time
|
||
|
import pandas as pd
|
||
|
# other modules
|
||
|
from osgeo import gdal, ogr, osr
|
||
|
import pickle
|
||
|
import matplotlib.cm as cm
|
||
|
from pylab import ginput
|
||
|
|
||
|
# image processing modules
|
||
|
import skimage.filters as filters
|
||
|
import skimage.exposure as exposure
|
||
|
import skimage.transform as transform
|
||
|
import sklearn.decomposition as decomposition
|
||
|
import skimage.measure as measure
|
||
|
import skimage.morphology as morphology
|
||
|
from scipy import ndimage
|
||
|
|
||
|
# machine learning modules
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.neural_network import MLPClassifier
|
||
|
from sklearn.preprocessing import StandardScaler, Normalizer
|
||
|
from sklearn.externals import joblib
|
||
|
|
||
|
# import own modules
|
||
|
import functions.utils as utils
|
||
|
import functions.sds as sds
|
||
|
|
||
|
# some settings
|
||
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
||
|
plt.rcParams['axes.grid'] = True
|
||
|
plt.rcParams['figure.max_open_warning'] = 100
|
||
|
ee.Initialize()
|
||
|
|
||
|
# parameters
|
||
|
cloud_thresh = 0.5 # threshold for cloud cover
|
||
|
plot_bool = False # if you want the plots
|
||
|
prob_high = 99.9 # upper probability to clip and rescale pixel intensity
|
||
|
min_contour_points = 100# minimum number of points contained in each water line
|
||
|
output_epsg = 28356 # GDA94 / MGA Zone 56
|
||
|
buffer_size = 10 # radius (in pixels) of disk for buffer (pixel classification)
|
||
|
min_beach_size = 50 # number of pixels in a beach (pixel classification)
|
||
|
|
||
|
# load metadata (timestamps and epsg code) for the collection
|
||
|
satname = 'L8'
|
||
|
sitename = 'NARRA_all'
|
||
|
#sitename = 'NARRA'
|
||
|
#sitename = 'OLDBAR'
|
||
|
|
||
|
# Load metadata
|
||
|
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
|
||
|
|
||
|
# path to images
|
||
|
file_path_pan = os.path.join(os.getcwd(), 'data', satname, sitename, 'pan')
|
||
|
file_path_ms = os.path.join(os.getcwd(), 'data', satname, sitename, 'ms')
|
||
|
file_names_pan = os.listdir(file_path_pan)
|
||
|
file_names_ms = os.listdir(file_path_ms)
|
||
|
N = len(file_names_pan)
|
||
|
|
||
|
# initialise some variables
|
||
|
idx_skipped = []
|
||
|
idx_nocloud = []
|
||
|
n_features = 10
|
||
|
train_pos = np.nan*np.ones((1,n_features))
|
||
|
train_neg = np.nan*np.ones((1,n_features))
|
||
|
columns = ('B','G','R','NIR','SWIR','Pan','WI','VI','BR', 'mWI', 'SAND')
|
||
|
|
||
|
#%%
|
||
|
for i in range(N):
|
||
|
# read pan image
|
||
|
fn_pan = os.path.join(file_path_pan, file_names_pan[i])
|
||
|
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
|
||
|
georef = np.array(data.GetGeoTransform())
|
||
|
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
|
||
|
im_pan = np.stack(bands, 2)[:,:,0]
|
||
|
# read ms image
|
||
|
fn_ms = os.path.join(file_path_ms, file_names_ms[i])
|
||
|
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
|
||
|
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
|
||
|
im_ms = np.stack(bands, 2)
|
||
|
# cloud mask
|
||
|
im_qa = im_ms[:,:,5]
|
||
|
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
|
||
|
cloud_mask = transform.resize(cloud_mask, (im_pan.shape[0], im_pan.shape[1]),
|
||
|
order=0, preserve_range=True,
|
||
|
mode='constant').astype('bool_')
|
||
|
# resize the image using bilinear interpolation (order 1)
|
||
|
im_ms = transform.resize(im_ms,(im_pan.shape[0], im_pan.shape[1]),
|
||
|
order=1, preserve_range=True, mode='constant')
|
||
|
# check if -inf or nan values and add to cloud mask
|
||
|
im_inf = np.isin(im_ms[:,:,0], -np.inf)
|
||
|
im_nan = np.isnan(im_ms[:,:,0])
|
||
|
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
||
|
# skip if cloud cover is more than the threshold
|
||
|
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
||
|
if cloud_cover > cloud_thresh:
|
||
|
print('skip ' + str(i) + ' - cloudy (' + str(cloud_cover) + ')')
|
||
|
idx_skipped.append(i)
|
||
|
continue
|
||
|
idx_nocloud.append(i)
|
||
|
|
||
|
# rescale intensities
|
||
|
im_ms = sds.rescale_image_intensity(im_ms, cloud_mask, prob_high, plot_bool)
|
||
|
im_pan = sds.rescale_image_intensity(im_pan, cloud_mask, prob_high, plot_bool)
|
||
|
# pansharpen rgb image
|
||
|
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
|
||
|
nrow = im_ms_ps.shape[0]
|
||
|
ncol = im_ms_ps.shape[1]
|
||
|
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
|
||
|
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
|
||
|
# calculate NDWI
|
||
|
im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, plot_bool)
|
||
|
# detect edges
|
||
|
wl_pix = sds.find_wl_contours(im_ndwi, cloud_mask, min_contour_points, plot_bool)
|
||
|
# classify sand pixels with Kmeans
|
||
|
im_sand = sds.classify_sand_unsupervised(im_ms_ps, im_pan, cloud_mask, wl_pix, buffer_size, min_beach_size, plot_bool)
|
||
|
|
||
|
# plot a figure to manually select which images to keep
|
||
|
im = np.copy(im_ms_ps)
|
||
|
im[im_sand,0] = 0
|
||
|
im[im_sand,1] = 0
|
||
|
im[im_sand,2] = 1
|
||
|
plt.figure()
|
||
|
plt.imshow(im[:,:,[2,1,0]])
|
||
|
plt.axis('image')
|
||
|
plt.title('Sand classification')
|
||
|
plt.show()
|
||
|
mng = plt.get_current_fig_manager()
|
||
|
mng.window.showMaximized()
|
||
|
plt.tight_layout()
|
||
|
plt.draw()
|
||
|
|
||
|
|
||
|
|
||
|
# click a point
|
||
|
# top-left quadrant: keep classif as pos and click somewhere for neg
|
||
|
# bottom-left: keep classif as neg
|
||
|
# any right quadrant: discard image
|
||
|
pt_in = np.array(ginput(n=1, timeout=1000))
|
||
|
if pt_in[0][0] < im_ms_ps.shape[1]/2:
|
||
|
|
||
|
im_features = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1], n_features))
|
||
|
im_features[:,:,[0,1,2,3,4]] = im_ms_ps
|
||
|
im_features[:,:,5] = im_pan
|
||
|
im_features[:,:,6] = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False) # (NIR-G)
|
||
|
im_features[:,:,7] = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,2], cloud_mask, False) # (NIR-R)
|
||
|
im_features[:,:,8] = sds.nd_index(im_ms_ps[:,:,0], im_ms_ps[:,:,2], cloud_mask, False) # (B-R)
|
||
|
im_features[:,:,9] = sds.nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False) # (SWIR-G)
|
||
|
# win = np.ones((3,3))
|
||
|
# im_features[:,:,9] = ndimage.generic_filter(im_features[:,:,5], np.std, footprint=win)
|
||
|
# im_features[:,:,10] = ndimage.generic_filter(im_features[:,:,5], np.max, footprint=win) - ndimage.generic_filter(im_features[:,:,5], np.min, footprint=win)
|
||
|
|
||
|
if pt_in[0][1] < im_ms_ps.shape[0]/2:
|
||
|
# positive examples
|
||
|
vec_pos = im_features[im_sand,:]
|
||
|
train_pos = np.append(train_pos, vec_pos, axis=0)
|
||
|
|
||
|
# click where negative examples are
|
||
|
pt_neg = np.round(np.array(ginput(n=1, timeout=1000))[0])
|
||
|
radius = int(round(np.sqrt(sum(sum(im_sand)))))
|
||
|
idx_rows = np.linspace(0,radius-1,radius).astype(int) + int(pt_neg[1])
|
||
|
idx_cols = np.linspace(0,radius-1,radius).astype(int) + int(pt_neg[0])
|
||
|
xx, yy = np.meshgrid(idx_rows,idx_cols, indexing='ij')
|
||
|
row_neg = xx.reshape(radius*radius)
|
||
|
col_neg = yy.reshape(radius*radius)
|
||
|
im_nosand = np.zeros((nrow,ncol)).astype(bool)
|
||
|
for i in range(len(row_neg)):
|
||
|
im_nosand[row_neg[i],col_neg[i]] = True
|
||
|
im_ms_ps[row_neg[i],col_neg[i],0] = 1
|
||
|
im_ms_ps[row_neg[i],col_neg[i],1] = 1
|
||
|
im_ms_ps[row_neg[i],col_neg[i],2] = 0
|
||
|
plt.imshow(im_ms_ps[:,:,[2,1,0]])
|
||
|
plt.draw()
|
||
|
|
||
|
# negative examples
|
||
|
vec_neg = im_features[im_nosand,:]
|
||
|
train_neg = np.append(train_neg, vec_neg, axis=0)
|
||
|
|
||
|
else:
|
||
|
# negative examples
|
||
|
vec_neg = im_features[im_sand,:]
|
||
|
train_neg = np.append(train_neg, vec_neg, axis=0)
|
||
|
|
||
|
else:
|
||
|
print('skip ' + str(i))
|
||
|
idx_skipped.append(i)
|
||
|
|
||
|
# format data
|
||
|
train_pos = train_pos[1:,:]
|
||
|
train_neg = train_neg[1:,:]
|
||
|
n_pos = len(train_pos)
|
||
|
n_neg = len(train_neg)
|
||
|
training_data = np.zeros((n_pos+n_neg, n_features+1))
|
||
|
training_data[:n_pos,:n_features] = train_pos
|
||
|
training_data[n_pos:n_pos+n_neg,:n_features] = train_neg
|
||
|
training_data[:n_pos,n_features] = np.ones((n_pos))
|
||
|
df_train = pd.DataFrame(training_data, columns=columns)
|
||
|
df_train.dropna(axis=0, how='any', inplace=True)
|
||
|
sand_train = np.array(df_train)
|
||
|
|
||
|
# save data
|
||
|
#with open(os.path.join(filepath, sitename + '_sand_idxskip' + '.pkl'), 'wb') as f:
|
||
|
# pickle.dump(idx_skipped, f)
|
||
|
#with open(os.path.join(filepath, sitename + '_sand_train' + '.pkl'), 'wb') as f:
|
||
|
# pickle.dump(sand_train, f)
|
||
|
#df_train.to_csv('training_data.csv')
|
||
|
|
||
|
#%% Train neural network on data
|
||
|
|
||
|
# load training data
|
||
|
with open(os.path.join(filepath, sitename + '_sand_train' + '.pkl'), 'rb') as f:
|
||
|
sand_train = pickle.load(f)
|
||
|
|
||
|
n_features = sand_train.shape[1] - 1
|
||
|
X = sand_train[:,0:n_features]
|
||
|
y = sand_train[:,n_features]
|
||
|
|
||
|
# divide in train and test
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
|
||
|
|
||
|
#scaler = StandardScaler()
|
||
|
#scaler.fit(X_train)
|
||
|
#X_train = scaler.transform(X_train)
|
||
|
#X_test = scaler.transform(X_test)
|
||
|
|
||
|
# run NN on train dat and evaluate on test data
|
||
|
clf = MLPClassifier()
|
||
|
clf.fit(X_train,y_train)
|
||
|
clf.score(X_test,y_test)
|
||
|
|
||
|
# save NN model
|
||
|
joblib.dump(clf, os.path.join(os.getcwd(), 'sand_classification', 'NN_small.pkl'))
|
||
|
|
||
|
|