You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
292 lines
13 KiB
Python
292 lines
13 KiB
Python
5 years ago
|
# -*- coding: utf-8 -*-
|
||
|
#==========================================================#
|
||
|
#Last Updated - June 2018
|
||
|
#@author: z5025317 Valentin Heimhuber
|
||
|
#code for processing RMA11 water quality results - using gridded approach instead of a chainage line (estuary longitudinal line)
|
||
|
|
||
|
#==========================================================#
|
||
|
#Load packages
|
||
|
#==========================================================#
|
||
|
import geopandas as gpd
|
||
|
import numpy as np
|
||
|
import os
|
||
|
import pandas as pd
|
||
|
import glob
|
||
|
import matplotlib
|
||
|
import matplotlib.pyplot as plt
|
||
|
from datetime import datetime
|
||
|
from datetime import timedelta
|
||
|
from matplotlib.backends.backend_pdf import PdfPages
|
||
|
from ggplot import *
|
||
|
matplotlib.style.use('ggplot')
|
||
|
|
||
|
#==========================================================#
|
||
|
#Input parameters
|
||
|
#==========================================================#
|
||
|
#set scenario codes and beginning and end years and corresponding scenario code
|
||
|
fs=['Hwq003', 'Hwq005']
|
||
|
scenario_real_names = ['Present', '0.9m SLR']
|
||
|
WQvariables = ['SALINITY']
|
||
|
variable = 'elev' #depth or vel
|
||
|
|
||
|
maxrowsincsv = 15000
|
||
|
|
||
|
#name of scenario
|
||
|
Plot_scenario = 'HD_grid_V1'
|
||
|
ylims = [0,40]
|
||
|
|
||
|
#time frames for analysis
|
||
|
startdate = '1999 01 01'
|
||
|
enddate = '2000 12 30'
|
||
|
tideanalysis_day = '1999 05 26'
|
||
|
#year=range(startyear, endyear+1)
|
||
|
|
||
|
#load and refine node vs mesh shapefile to store the results of the statistics
|
||
|
Node_mesh = gpd.read_file('H:/WRL_Projects/Hunter_CC_Modeling/Module_6/03_Results/GIS_data/Mesh_Node_GIS_Setup/hcc002_fishnet_500m_V3_joinXY.shp')
|
||
|
Node_mesh.index = Node_mesh['Field1']
|
||
|
Node_mesh = Node_mesh.iloc[:,-4:]
|
||
|
Node_mesh.columns = ['Node', 'X', 'Y', 'geometry']
|
||
|
node = Node_mesh['Node'].values
|
||
|
chainages = node
|
||
|
Node_mesh.plot()
|
||
|
|
||
|
#set directory path for output files
|
||
|
output_directory = 'H:/WRL_Projects/Hunter_CC_Modeling/Module_6/03_Results/Output/Postprocessed/' + Plot_scenario + '/Figures/'
|
||
|
|
||
|
#set input directories and data
|
||
|
#tidal boundary data
|
||
|
tides_csv='C:/Users/z5025317/OneDrive - UNSW/Hunter_CC_Modeling/07_Modelling/01_Input/Tide Generator/Tidal Simulation Python Script (BMM)/Tides_1990_2010.csv'
|
||
|
#CSV file of mesh nodes and corresponding chainages
|
||
|
nodes_csv = 'H:/WRL_Projects/Hunter_CC_Modeling/Module_6/03_Results/Chainages/Hunter_nodes.csv'
|
||
|
#River flow boundary
|
||
|
Flow_csv = 'H:/WRL_Projects/Hunter_CC_Modeling/Module_6/01_Input/BCGeneration/Scenarios/Calibration/Calibration_Greta.csv'
|
||
|
#River bathy
|
||
|
bathy_csv = 'H:/WRL_Projects/Hunter_CC_Modeling/Module_6/03_Results/Chainages/Hunter_nodes_bathy.csv'
|
||
|
|
||
|
#input csv with species and their salinity optima and thresholds
|
||
|
salinity_eco_csv = "H:/WRL_Projects/Hunter_CC_Modeling/Module_6/03_Results/Eco_thresholds/Salintiy_Hunter_physiology_V1.csv"
|
||
|
salinity_eco_df = pd.read_csv(salinity_eco_csv, index_col=2)
|
||
|
salinity_eco_df = salinity_eco_df[salinity_eco_df.index.notnull()]
|
||
|
#==========================================================#
|
||
|
|
||
|
|
||
|
#==========================================================#
|
||
|
#set plot parameters
|
||
|
ALPHA_figs = 1
|
||
|
font = {'family' : 'sans-serif',
|
||
|
'weight' : 'normal',
|
||
|
'size' : 14}
|
||
|
matplotlib.rc('font', **font)
|
||
|
#==========================================================#
|
||
|
|
||
|
#==========================================================#
|
||
|
#output_directory = 'J:/Project wrl2016032/NARCLIM_Raw_Data/Extracted'
|
||
|
if not os.path.exists(output_directory):
|
||
|
os.makedirs(output_directory)
|
||
|
print('-------------------------------------------')
|
||
|
print("output directory folder didn't exist and was generated")
|
||
|
print('-------------------------------------------')
|
||
|
#==========================================================#
|
||
|
|
||
|
|
||
|
#========================================================#
|
||
|
#automated part of the code doing the data extraction
|
||
|
#==========================================================
|
||
|
|
||
|
#Load boundary flow data
|
||
|
Flow_df = pd.read_csv(Flow_csv, parse_dates=True, dayfirst=True, index_col=0)['Q[ML/d]']
|
||
|
Flow_df.columns = ['Q[ML/d]']
|
||
|
Flow_df = Flow_df[datetime.strptime(startdate , '%Y %m %d').date():datetime.strptime(enddate, '%Y %m %d').date()]
|
||
|
|
||
|
#Load tide boundary data
|
||
|
tides_dfm = pd.read_csv(tides_csv, parse_dates=True, index_col=0)
|
||
|
tides_dfm.columns = ['tide']
|
||
|
|
||
|
#Load bathymetry data
|
||
|
bathy_dfm = pd.read_csv(bathy_csv, index_col=0)
|
||
|
bathy_dfm.plot()
|
||
|
|
||
|
#read csv file with extracted RMA data
|
||
|
#RMA_df = pd.read_csv(RMA_data_csv, parse_dates=True, index_col=0)
|
||
|
|
||
|
#load RMA2 data
|
||
|
HD_Summary_df = pd.DataFrame()
|
||
|
for variable in WQvariables:
|
||
|
Summary_df = pd.DataFrame()
|
||
|
df = pd.DataFrame()
|
||
|
for f in fs:
|
||
|
#set input and output directories
|
||
|
input_directory = 'H:/WRL_Projects/Hunter_CC_Modeling/Module_6/03_Results/Output/Raw/Output_gridded1/' + f
|
||
|
# Set working direcotry (where postprocessed NARClIM data is located)
|
||
|
os.chdir(input_directory)
|
||
|
#==========================================================#
|
||
|
#Load data file
|
||
|
Clim_Var_CSVs = glob.glob('*' + variable + '*')
|
||
|
clim_var_csv_path = Clim_Var_CSVs[0]
|
||
|
df = pd.read_csv(clim_var_csv_path, index_col=False)
|
||
|
df.index = pd.to_datetime(df.Year, format = '%Y') + pd.to_timedelta(df.Hour, unit='h')
|
||
|
df= df.drop(columns=['Year', 'Hour'])
|
||
|
#df.columns = [NODE+'_Sal'] #, NODE+'_Tem']
|
||
|
df.columns = [s + variable + '_'+ f for s in df.columns]
|
||
|
#cut down the df to start and end date
|
||
|
df = df[datetime.strptime(startdate , '%Y %m %d').date():datetime.strptime(enddate, '%Y %m %d').date()]
|
||
|
Summary_df = pd.concat([Summary_df, df], axis=1, join='outer')
|
||
|
HD_Summary_df = pd.concat([HD_Summary_df , Summary_df], axis=1, join='outer')
|
||
|
|
||
|
#subset the input data frame
|
||
|
Present_df = HD_Summary_df.filter(regex='Hwq003')
|
||
|
Present_df.columns = chainages
|
||
|
Far_future_df = HD_Summary_df.filter(regex='Hwq005')
|
||
|
Far_future_df.columns = chainages
|
||
|
|
||
|
|
||
|
|
||
|
#do statistics to summarize the time series based on optimum, min and max thresholds
|
||
|
salinity_eco_df.columns
|
||
|
variable = 'Sal'
|
||
|
for index, row in salinity_eco_df.iterrows():
|
||
|
print row["Minimum optimal"]
|
||
|
print row["Maximum optimal"]
|
||
|
print row['# species']
|
||
|
print row['Lower treshold']
|
||
|
print row['Upper treshold']
|
||
|
|
||
|
Pres_Sal_median_df = pd.DataFrame(Present_df.median())
|
||
|
Pres_Sal_median_df.columns = ['med']
|
||
|
Present_df_95 = pd.DataFrame(Present_df.quantile(q=0.95, axis=0))
|
||
|
Present_df_05 = pd.DataFrame(Present_df.quantile(q=0.05, axis=0))
|
||
|
Present_stats = pd.concat([Present_df_05, Pres_Sal_median_df, Present_df_95], axis=1, join='outer')
|
||
|
Present_stats.columns = ['0_' + str(s) for s in Present_stats.columns]
|
||
|
|
||
|
agg = ('>'+ str(row["Maximum optimal"]) + '_count', lambda x: x.gt(row["Maximum optimal"]).sum()),
|
||
|
Present_df_gtTHS = pd.DataFrame(Present_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Present_df_gtTHS = pd.DataFrame(Present_df_gtTHS.transpose().mean(axis=1))
|
||
|
Present_df_gtTHS.columns = [str(int(row['# species'])) + '_0>' + 'MaOp']
|
||
|
Present_df_gtTHS.index = chainages
|
||
|
|
||
|
agg = ('>'+ str(row["Minimum optimal"]) + '_count', lambda x: x.lt(row["Minimum optimal"]).sum()),
|
||
|
Present_df_gtTHS_miop = pd.DataFrame(Present_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Present_df_gtTHS_miop = pd.DataFrame(Present_df_gtTHS_miop.transpose().mean(axis=1))
|
||
|
Present_df_gtTHS_miop.columns = [str(int(row['# species'])) + '_0<' + 'MiOp']
|
||
|
Present_df_gtTHS_miop.index = chainages
|
||
|
|
||
|
agg = ('>'+ str(row["Upper treshold"]) + '_count', lambda x: x.gt(row["Upper treshold"]).sum()),
|
||
|
Present_df_gtTHS_malim = pd.DataFrame(Present_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Present_df_gtTHS_malim = pd.DataFrame(Present_df_gtTHS_malim.transpose().mean(axis=1))
|
||
|
Present_df_gtTHS_malim.columns = [str(int(row['# species'])) + '_0>' + 'Malim']
|
||
|
Present_df_gtTHS_malim.index = chainages
|
||
|
|
||
|
agg = ('>'+ str(row["Lower treshold"]) + '_count', lambda x: x.lt(row["Lower treshold"]).sum()),
|
||
|
Present_df_gtTHS_lolim = pd.DataFrame(Present_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Present_df_gtTHS_lolim = pd.DataFrame(Present_df_gtTHS_lolim.transpose().mean(axis=1))
|
||
|
Present_df_gtTHS_lolim.columns = [str(int(row['# species'])) + '_0<' + 'LoLim']
|
||
|
Present_df_gtTHS_lolim.index = chainages
|
||
|
|
||
|
|
||
|
#future
|
||
|
Far_future_Sal_median_df = pd.DataFrame(Far_future_df.median())
|
||
|
Far_future_Sal_median_df.columns = ['med']
|
||
|
Far_future_df_95 = pd.DataFrame(Far_future_df.quantile(q=0.95, axis=0))
|
||
|
Far_future_df_05 = pd.DataFrame(Far_future_df.quantile(q=0.05, axis=0))
|
||
|
Far_future_stats = pd.concat([Far_future_df_05, Far_future_Sal_median_df, Far_future_df_95], axis=1, join='outer')
|
||
|
Far_future_stats.columns = ['9_' + str(s) for s in Far_future_stats.columns]
|
||
|
|
||
|
agg = ('>'+ str(row["Maximum optimal"]) + '_count', lambda x: x.gt(row["Maximum optimal"]).sum()),
|
||
|
Far_future_df_gtTHS = pd.DataFrame(Far_future_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Far_future_df_gtTHS = pd.DataFrame(Far_future_df_gtTHS.transpose().mean(axis=1))
|
||
|
Far_future_df_gtTHS.columns = [str(int(row['# species'])) + '_9>' + 'MaOp']
|
||
|
Far_future_df_gtTHS.index = chainages
|
||
|
|
||
|
agg = ('>'+ str(row["Minimum optimal"]) + '_count', lambda x: x.lt(row["Minimum optimal"]).sum()),
|
||
|
Far_future_df_gtTHS_miop = pd.DataFrame(Far_future_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Far_future_df_gtTHS_miop = pd.DataFrame(Far_future_df_gtTHS_miop.transpose().mean(axis=1))
|
||
|
Far_future_df_gtTHS_miop.columns = [str(int(row['# species'])) + '_9<' + 'MiOp']
|
||
|
Far_future_df_gtTHS_miop.index = chainages
|
||
|
|
||
|
agg = ('>'+ str(row["Upper treshold"]) + '_count', lambda x: x.gt(row["Upper treshold"]).sum()),
|
||
|
Far_future_df_gtTHS_malim = pd.DataFrame(Far_future_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Far_future_df_gtTHS_malim = pd.DataFrame(Far_future_df_gtTHS_malim.transpose().mean(axis=1))
|
||
|
Far_future_df_gtTHS_malim.columns = [str(int(row['# species'])) + '_9>' + 'Malim']
|
||
|
Far_future_df_gtTHS_malim.index = chainages
|
||
|
|
||
|
agg = ('>'+ str(row["Lower treshold"]) + '_count', lambda x: x.lt(row["Lower treshold"]).sum()),
|
||
|
Far_future_df_gtTHS_lolim = pd.DataFrame(Far_future_df.resample('A').agg(agg)*100/(365*24*2))
|
||
|
Far_future_df_gtTHS_lolim = pd.DataFrame(Far_future_df_gtTHS_lolim.transpose().mean(axis=1))
|
||
|
Far_future_df_gtTHS_lolim.columns = [str(int(row['# species'])) + '_9<' + 'LoLim']
|
||
|
Far_future_df_gtTHS_lolim.index = chainages
|
||
|
|
||
|
|
||
|
#combine statistics into single df
|
||
|
Shapefile_df = pd.concat([Node_mesh, Present_stats, Present_df_gtTHS, Present_df_gtTHS_miop,
|
||
|
Present_df_gtTHS_malim, Present_df_gtTHS_lolim, Far_future_stats, Far_future_df_gtTHS,
|
||
|
Far_future_df_gtTHS_miop, Far_future_df_gtTHS_malim, Far_future_df_gtTHS_lolim], axis=1, join='outer')
|
||
|
|
||
|
|
||
|
Shapefile_df['Ch%_MaOp'] = Shapefile_df[str(int(row['# species'])) + '_9>' + 'MaOp'] - Shapefile_df[str(int(row['# species'])) + '_0>' + 'MaOp']
|
||
|
Shapefile_df['Ch%_MiOp'] = Shapefile_df[str(int(row['# species'])) + '_9<' + 'MiOp'] - Shapefile_df[str(int(row['# species'])) + '_0<' + 'MiOp']
|
||
|
Shapefile_df['Ch%_Malim'] = Shapefile_df[str(int(row['# species'])) + '_9>' + 'Malim'] - Shapefile_df[str(int(row['# species'])) + '_0>' + 'Malim']
|
||
|
Shapefile_df['Ch%_LoLim'] = Shapefile_df[str(int(row['# species'])) + '_9<' + 'LoLim'] - Shapefile_df[str(int(row['# species'])) + '_0<' + 'LoLim']
|
||
|
|
||
|
#Shapefile_df.columns
|
||
|
#Combined_df_gtTHS.columns = [s + '_gtTHS' for s in scenario_real_names]
|
||
|
|
||
|
#Combined_df_gtTHS.plot(ylim=[0,500])
|
||
|
Shape_out_path = output_directory + 'Hunter_salinity_stats_V3.shp'
|
||
|
Shapefile_df.to_file(Shape_out_path, driver='ESRI Shapefile')
|
||
|
|
||
|
|
||
|
#==========================================================#
|
||
|
#Plot salinityanalysis
|
||
|
#==========================================================#
|
||
|
png_out_name = output_directory + variable + 'sea level rise analysis_' + Plot_scenario + '.pdf'
|
||
|
fig = plt.figure(figsize=(40,20))
|
||
|
ax=plt.subplot(1,3,1)
|
||
|
plt.title('median '+ variable + ' present day')
|
||
|
Shapefile_df.plot(cmap='viridis_r', column='present median' , legend=True,ax=ax)
|
||
|
#lgd = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||
|
ax.legend()
|
||
|
ax=plt.subplot(1,3,2)
|
||
|
plt.title('Change in median of '+ variable + ' under 0.9m SLR')
|
||
|
Shapefile_df.plot(cmap='viridis_r', column='Dif in median' , legend=True,ax=ax)
|
||
|
#lgd = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||
|
ax.legend()
|
||
|
#plot tides
|
||
|
ax=plt.subplot(1,3,3)
|
||
|
plt.title('Change in time where '+ variable + ' > '+ str(Threshold) + ' under 0.9m SLR')
|
||
|
#max_min_extime_elev.plot(cmap='viridis_r', column='HigT Elev 0SLR' , legend=True, vmin=ylims[0], vmax=ylims[1],ax=ax)
|
||
|
Shapefile_df.plot(cmap='viridis_r', column='Dif in % time > threshold' , legend=True,ax=ax)
|
||
|
ax.legend()
|
||
|
ax.legend()
|
||
|
fig.tight_layout()
|
||
|
fig.savefig(png_out_name)
|
||
|
plt.close()
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|