You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			199 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			199 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
# -*- coding: utf-8 -*-
 | 
						|
#####################################----------------------------------
 | 
						|
#Last Updated - March 2018
 | 
						|
#@author: z5025317 Valentin Heimhuber
 | 
						|
#code for creating climate prioritization plots for NARCLIM variables. 
 | 
						|
#Inputs: Uses CSV files that contain all 12 NARCLIM model runs time series for 1 grid cell created with: P1_NARCliM_NC_to_CSV_CCRC_SS.py
 | 
						|
#####################################----------------------------------
 | 
						|
#Load packages
 | 
						|
#####################################----------------------------------
 | 
						|
import numpy as np
 | 
						|
import os
 | 
						|
import pandas as pd
 | 
						|
import glob
 | 
						|
import matplotlib
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
from datetime import datetime
 | 
						|
from datetime import timedelta
 | 
						|
from matplotlib.backends.backend_pdf import PdfPages
 | 
						|
matplotlib.style.use('ggplot')
 | 
						|
#
 | 
						|
# Set working direcotry (where postprocessed NARClIM data is located)
 | 
						|
os.chdir('C:/Users/z5025317/WRL_Postdoc/Projects/Paper#1/NARCLIM/')
 | 
						|
#
 | 
						|
#
 | 
						|
#####################################----------------------------------
 | 
						|
#set input parameters
 | 
						|
Base_period_start = '1990-01-01'
 | 
						|
Base_period_end = '2080-01-01' #use last day that's not included in period as < is used for subsetting
 | 
						|
#Clim_var_type  = 'tasmean' will create pdf for all variables in folder           
 | 
						|
#####################################----------------------------------
 | 
						|
#set directory path for output files
 | 
						|
output_directory = 'Output'
 | 
						|
#output_directory = 'J:/Project wrl2016032/NARCLIM_Raw_Data/Extracted'
 | 
						|
if not os.path.exists(output_directory):
 | 
						|
    os.makedirs(output_directory)
 | 
						|
    print("output directory folder didn't exist and was generated")
 | 
						|
Clim_Var_CSVs = glob.glob('./Site_CSVs/*')
 | 
						|
#Clim_Var_CSV = glob.glob('./Site_CSVs/' + Clim_var_type + '*' )
 | 
						|
#read CSV file
 | 
						|
for clim_var_csv_path in Clim_Var_CSVs:
 | 
						|
    Filename = os.path.basename(os.path.normpath(clim_var_csv_path))
 | 
						|
    Clim_var_type = Filename.split('_', 1)[0]
 | 
						|
    print(clim_var_csv_path)
 | 
						|
    Full_df = pd.read_csv(clim_var_csv_path, index_col=0, parse_dates = True)
 | 
						|
    #pandas datestamp index to period (we don't need the 12 pm info in the index (daily periods are enough))
 | 
						|
    Full_df.index = Full_df.index.to_period('D')
 | 
						|
    #check data types of columns
 | 
						|
    #Full_df.dtypes
 | 
						|
    
 | 
						|
    #substract a constant from all values (temp)
 | 
						|
    if Clim_var_type == 'tasmean':
 | 
						|
        Full_df = Full_df.iloc[:,0:26]-273.15
 | 
						|
    
 | 
						|
    #index the narclim periods if needed
 | 
						|
    #Full_df.loc[(Full_df.index >= '1990-01-01') & (Full_df.index < '2010-01-01'), 'period']= '1990-2009'
 | 
						|
    #Full_df.loc[(Full_df.index >= '2020-01-01') & (Full_df.index < '2040-01-01'), 'period']= '2020-2039'
 | 
						|
    #Full_df.loc[(Full_df.index >= '2060-01-01') & (Full_df.index < '2080-01-01'), 'period']= '2060-2079'
 | 
						|
    
 | 
						|
    #Subset the data to the minimum base period and above (used to set the lenght of the present day climate period)
 | 
						|
    Fdf_1900_2080 = Full_df.loc[(Full_df.index >= Base_period_start) & (Full_df.index < Base_period_end)]
 | 
						|
    #Aggregate daily df to annual time series
 | 
						|
    if (Clim_var_type == 'pracc' or Clim_var_type == 'evspsblmean' or Clim_var_type == 'potevpmean' 
 | 
						|
    or Clim_var_type == 'pr1Hmaxtstep' or Clim_var_type == 'wss1Hmaxtstep'):
 | 
						|
        Fdf_1900_2080_annual = Fdf_1900_2080.resample('A').sum()
 | 
						|
        Fdf_1900_2080_annual = Fdf_1900_2080_annual.replace(0, np.nan)
 | 
						|
        Fdf_1900_2080_monthly = Fdf_1900_2080.resample('M').sum()
 | 
						|
        Fdf_1900_2080_monthly = Fdf_1900_2080_monthly.replace(0, np.nan)
 | 
						|
        Fdf_1900_2080_weekly = Fdf_1900_2080.resample('W').sum()
 | 
						|
        Fdf_1900_2080_weekly = Fdf_1900_2080_weekly.replace(0, np.nan)
 | 
						|
        Fdf_Seas_means = Fdf_1900_2080.resample('Q-NOV').sum() #seasonal means
 | 
						|
        Fdf_Seas_means = Fdf_Seas_means.replace(0, np.nan)
 | 
						|
    else:    
 | 
						|
        Fdf_1900_2080_annual = Fdf_1900_2080.resample('A').mean()
 | 
						|
        Fdf_1900_2080_monthly = Fdf_1900_2080.resample('M').mean()
 | 
						|
        Fdf_1900_2080_weekly = Fdf_1900_2080.resample('W').mean()
 | 
						|
        Fdf_Seas_means = Fdf_1900_2080.resample('Q-NOV').mean() #seasonal means
 | 
						|
    #plot the mean of all model runs
 | 
						|
    print('-------------------------------------------')
 | 
						|
    print('mean of all models for climate variable:  ' + Clim_var_type)
 | 
						|
    Fdf_1900_2080_means = Fdf_1900_2080.mean()
 | 
						|
    Fdf_1900_2080_means.plot(kind='bar', ylim=(16,22)).figure
 | 
						|
    print('-------------------------------------------')
 | 
						|
    
 | 
						|
    #time series plots:
 | 
						|
    #ranks = Fdf_1900_2080_means[3:].rank(axis=0)
 | 
						|
    df3 = Fdf_1900_2080_annual
 | 
						|
    Fdf_annual_sorted = df3.reindex_axis(df3.mean().sort_values().index, axis=1)
 | 
						|
    Fdf_annual_sorted_subset = Fdf_annual_sorted.iloc[:,[0,1,2,3,5,7,13,15,18, 22, 24,25]]
 | 
						|
    
 | 
						|
    #write the key plots to a single pdf document
 | 
						|
    pdf_out_file_name = Clim_var_type + '_start_' + Base_period_start + '_NARCliM_summary4.pdf'
 | 
						|
    pdf_out_path = output_directory +'/' + pdf_out_file_name
 | 
						|
    #open pdf and add the plots
 | 
						|
    
 | 
						|
    #developement
 | 
						|
    #I want to create a simple density plot for all values in present day, near future and far future
 | 
						|
    #this should be an easy indicator of change
 | 
						|
    #subset present day simulations
 | 
						|
    Full_current_df = Fdf_1900_2080.iloc[:,[0,1,2]]
 | 
						|
    Full_current_df = Full_current_df.stack()
 | 
						|
    #nearfuture
 | 
						|
    Full_nearfuture_df = Fdf_1900_2080.iloc[:,range(3,15)]
 | 
						|
    Full_nearfuture_df = Full_nearfuture_df.stack()
 | 
						|
    #farfuture
 | 
						|
    Full_farfuture_df = Fdf_1900_2080.iloc[:,range(15,27)]
 | 
						|
    Full_farfuture_df = Full_farfuture_df.stack()
 | 
						|
    Summarized_df = pd.concat([Full_current_df, Full_nearfuture_df], axis=1, ignore_index=True)
 | 
						|
    Summarized_df = pd.concat([Summarized_df, Full_farfuture_df], axis=1, ignore_index=True)
 | 
						|
    Summarized_df.columns = ['presentday', 'nearfuture', 'farfuture']
 | 
						|
    #end of developement
 | 
						|
    with PdfPages(pdf_out_path) as pdf:
 | 
						|
        #barplot of model means
 | 
						|
        plt.title(Clim_var_type + ' -  model means - full period')
 | 
						|
        ymin = min(Fdf_1900_2080_means) 
 | 
						|
        ymax = max(Fdf_1900_2080_means) 
 | 
						|
        Fdf_1900_2080_means.plot(kind='bar', ylim=(ymin,ymax))
 | 
						|
        Fdf_1900_2080_means.plot(kind='bar')
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        #full period density comparison
 | 
						|
        plt.title(Clim_var_type + ' -  density comparison - full period')
 | 
						|
        Summarized_df.plot.kde()
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        #annual box
 | 
						|
        plt.title(Clim_var_type + ' -  Annual means')
 | 
						|
        Fdf_1900_2080_annual.boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        #monthly box
 | 
						|
        plt.title(Clim_var_type + ' -  Monthly means')
 | 
						|
        Fdf_1900_2080_monthly.boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        #weekly box
 | 
						|
        plt.title(Clim_var_type + ' -  Weekly means')
 | 
						|
        Fdf_1900_2080_weekly.boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        #daily box
 | 
						|
        plt.title(Clim_var_type + ' -  Daily means')
 | 
						|
        Fdf_1900_2080.boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        # time series plot annual ALL models
 | 
						|
        plt.title(Clim_var_type + ' -  Time series - all models')
 | 
						|
        Fdf_1900_2080_annual.plot(legend=False)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        #
 | 
						|
        plt.title(Clim_var_type + ' -  Time series - representative models')
 | 
						|
        Fdf_annual_sorted_subset.plot(legend=False)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        # seasonal mean boxplots
 | 
						|
        ymin = min(Fdf_Seas_means[Fdf_Seas_means.index.quarter==1].mean()) 
 | 
						|
        ymax = max(Fdf_Seas_means[Fdf_Seas_means.index.quarter==1].mean()) 
 | 
						|
        plt.title(Clim_var_type + ' -  DJF Summer means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==1].mean().plot(kind='bar', ylim=(ymin,ymax))
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()  
 | 
						|
        plt.title(Clim_var_type + ' -  DJF Summer means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==1].boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        ymin = min(Fdf_Seas_means[Fdf_Seas_means.index.quarter==2].mean()) 
 | 
						|
        ymax = max(Fdf_Seas_means[Fdf_Seas_means.index.quarter==2].mean())
 | 
						|
        plt.title(Clim_var_type + ' -  MAM Autumn means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==2].mean().plot(kind='bar', ylim=(ymin,ymax))
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close() 
 | 
						|
        plt.title(Clim_var_type + ' -  MAM Autumn means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==2].boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        ymin = min(Fdf_Seas_means[Fdf_Seas_means.index.quarter==3].mean()) 
 | 
						|
        ymax = max(Fdf_Seas_means[Fdf_Seas_means.index.quarter==3].mean())
 | 
						|
        plt.title(Clim_var_type + ' -  JJA Winter means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==3].mean().plot(kind='bar', ylim=(ymin,ymax))
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close() 
 | 
						|
        plt.title(Clim_var_type + ' -  JJA Winter means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==3].boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
        ymin = min(Fdf_Seas_means[Fdf_Seas_means.index.quarter==4].mean()) 
 | 
						|
        ymax = max(Fdf_Seas_means[Fdf_Seas_means.index.quarter==4].mean())
 | 
						|
        plt.title(Clim_var_type + ' -  SON Spring means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==4].mean().plot(kind='bar', ylim=(ymin,ymax))
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close() 
 | 
						|
        plt.title(Clim_var_type + ' -  SON Spring means')
 | 
						|
        Fdf_Seas_means[Fdf_Seas_means.index.quarter==4].boxplot(rot=90)
 | 
						|
        pdf.savefig(bbox_inches='tight', pad_inches=0.4)
 | 
						|
        plt.close()
 | 
						|
 | 
						|
#plots not used  
 | 
						|
#Fdf_annual_sorted_subset.plot(legend=False, subplots=True)
 |