# -*- coding: utf-8 -*- """ Created on Wed Jun 20 18:03:25 2018 @author: z5025317 """ #==========================================================# #Load packages #==========================================================# import numpy as np import os import pandas as pd import glob import matplotlib import matplotlib.pyplot as plt from datetime import datetime from datetime import timedelta from matplotlib.backends.backend_pdf import PdfPages from ggplot import * matplotlib.style.use('ggplot') import csv # import own modules # Set working direcotry (where postprocessed NARClIM data is located) os.chdir('C:/Users/z5025317/OneDrive - UNSW/WRL_Postdoc_Manual_Backup/WRL_Postdoc/Projects/Paper#1/Analysis/Code') #import climdata_fcts as fct import silo as sil #==========================================================# #==========================================================# # Set working direcotry (where postprocessed NARClIM data is located) os.chdir('C:/Users/z5025317/OneDrive - UNSW/WRL_Postdoc_Manual_Backup/WRL_Postdoc/Projects/Paper#1/') #==========================================================# #==========================================================# #set input parameters Case_Study_Name = 'CASESTUDY2' Casestudy2_csv_path = "Data/NARCLIM_Site_CSVs/CASESTUDY2/CASESTDUY2_NARCLIM_Point_Sites.csv" Silo_variables = ['daily_rain', "max_temp", "min_temp", 'et_short_crop', 'evap_syn'] Location = 'Estuary' #'Catchment' startdate= '19600101' enddate= '20180101' #==========================================================# #==========================================================# #set directory path for output files output_directory = 'Data/SILO/' + Case_Study_Name + '/' #output_directory = 'J:/Project wrl2016032/NARCLIM_Raw_Data/Extracted' if not os.path.exists(output_directory): os.makedirs(output_directory) print('-------------------------------------------') print("output directory folder didn't exist and was generated") print('-------------------------------------------') #==========================================================# #==========================================================# #read the CSV to extract the lat long and case stuy sites with open(Casestudy2_csv_path, mode='r') as infile: reader = csv.reader(infile) next(reader, None) with open('coors_new.csv', mode='w') as outfile: writer = csv.writer(outfile) if Location == 'Estuary': mydict = dict((rows[0],[rows[1],rows[2]]) for rows in reader) if Location == 'Ocean': mydict = dict((rows[0],[rows[3],rows[4]]) for rows in reader) if Location == 'Catchment': mydict = dict((rows[0],[rows[5],rows[6]]) for rows in reader) for Estuary in mydict: print Estuary, mydict[Estuary][0], mydict[Estuary][1] #==========================================================# #set directory path for output files output_directory_internal = output_directory + Estuary + '/' #output_directory = 'J:/Project wrl2016032/NARCLIM_Raw_Data/Extracted' if not os.path.exists(output_directory_internal): os.makedirs(output_directory_internal) print('-------------------------------------------') print("output directory folder didn't exist and was generated") print('-------------------------------------------') #==========================================================# output_csv = output_directory_internal + 'SILO_climdata_' + Estuary +'_'+ Location +'_' + mydict[Estuary][0] + '_' + mydict[Estuary][1] + '.csv' silo_df = sil.pointdata(Silo_variables, 'Okl9EDxgS2uzjLWtVNIBM5YqwvVcCxOmpd3nCzJh',startdate, enddate, None, mydict[Estuary][0], mydict[Estuary][1], True, output_csv) #==========================================================#