|
|
|
@ -27,9 +27,10 @@ os.chdir('C:/Users/z5025317/OneDrive - UNSW/WRL_Postdoc_Manual_Backup/WRL_Postdo
|
|
|
|
|
Base_period_start = '1990-01-01'
|
|
|
|
|
Base_period_end = '2080-01-01' #use last day that's not included in period as < is used for subsetting
|
|
|
|
|
Estuary = 'Nadgee' # 'Belongil'
|
|
|
|
|
Clim_var_type = "tasmean*" # '*' will create pdf for all variables in folder "pracc*|tasmax*"
|
|
|
|
|
Clim_var_type = "pracc*" # '*' will create pdf for all variables in folder "pracc*|tasmax*"
|
|
|
|
|
plot_pdf = 'yes'
|
|
|
|
|
delta_csv = 'no'
|
|
|
|
|
delta_csv = 'yes'
|
|
|
|
|
Stats = 'dailymax'
|
|
|
|
|
#####################################----------------------------------
|
|
|
|
|
#
|
|
|
|
|
#set directory path for output files
|
|
|
|
@ -69,14 +70,24 @@ for clim_var_csv_path in Clim_Var_CSVs:
|
|
|
|
|
#Aggregate daily df to annual time series
|
|
|
|
|
if (Clim_var_type == 'pracc' or Clim_var_type == 'evspsblmean' or Clim_var_type == 'potevpmean'
|
|
|
|
|
or Clim_var_type == 'pr1Hmaxtstep' or Clim_var_type == 'wss1Hmaxtstep'):
|
|
|
|
|
Fdf_1900_2080_annual = Fdf_1900_2080.resample('A').sum()
|
|
|
|
|
Fdf_1900_2080_annual = Fdf_1900_2080_annual.replace(0, np.nan)
|
|
|
|
|
Fdf_1900_2080_monthly = Fdf_1900_2080.resample('M').sum()
|
|
|
|
|
Fdf_1900_2080_monthly = Fdf_1900_2080_monthly.replace(0, np.nan)
|
|
|
|
|
Fdf_1900_2080_weekly = Fdf_1900_2080.resample('W').sum()
|
|
|
|
|
Fdf_1900_2080_weekly = Fdf_1900_2080_weekly.replace(0, np.nan)
|
|
|
|
|
Fdf_Seas_means = Fdf_1900_2080.resample('Q-NOV').sum() #seasonal means
|
|
|
|
|
Fdf_Seas_means = Fdf_Seas_means.replace(0, np.nan)
|
|
|
|
|
if(Stats == 'maxdaily'):
|
|
|
|
|
Fdf_1900_2080_annual = Fdf_1900_2080.resample('A').max()
|
|
|
|
|
Fdf_1900_2080_annual = Fdf_1900_2080_annual.replace(0, np.nan)
|
|
|
|
|
Fdf_1900_2080_monthly = Fdf_1900_2080.resample('M').max()
|
|
|
|
|
Fdf_1900_2080_monthly = Fdf_1900_2080_monthly.replace(0, np.nan)
|
|
|
|
|
Fdf_1900_2080_weekly = Fdf_1900_2080.resample('W').max()
|
|
|
|
|
Fdf_1900_2080_weekly = Fdf_1900_2080_weekly.replace(0, np.nan)
|
|
|
|
|
Fdf_Seas_means = Fdf_1900_2080.resample('Q-NOV').max() #seasonal means
|
|
|
|
|
Fdf_Seas_means = Fdf_Seas_means.replace(0, np.nan)
|
|
|
|
|
else:
|
|
|
|
|
Fdf_1900_2080_annual = Fdf_1900_2080.resample('A').sum()
|
|
|
|
|
Fdf_1900_2080_annual = Fdf_1900_2080_annual.replace(0, np.nan)
|
|
|
|
|
Fdf_1900_2080_monthly = Fdf_1900_2080.resample('M').sum()
|
|
|
|
|
Fdf_1900_2080_monthly = Fdf_1900_2080_monthly.replace(0, np.nan)
|
|
|
|
|
Fdf_1900_2080_weekly = Fdf_1900_2080.resample('W').sum()
|
|
|
|
|
Fdf_1900_2080_weekly = Fdf_1900_2080_weekly.replace(0, np.nan)
|
|
|
|
|
Fdf_Seas_means = Fdf_1900_2080.resample('Q-NOV').sum() #seasonal means
|
|
|
|
|
Fdf_Seas_means = Fdf_Seas_means.replace(0, np.nan)
|
|
|
|
|
else:
|
|
|
|
|
Fdf_1900_2080_annual = Fdf_1900_2080.resample('A').mean()
|
|
|
|
|
Fdf_1900_2080_monthly = Fdf_1900_2080.resample('M').mean()
|
|
|
|
@ -183,7 +194,7 @@ for clim_var_csv_path in Clim_Var_CSVs:
|
|
|
|
|
delta_all_df = pd.concat([delta_all_df, delta_df], axis=1)
|
|
|
|
|
|
|
|
|
|
if delta_csv == 'yes':
|
|
|
|
|
out_file_name = Estuary + '_' + Clim_var_type + '_NARCliM_ensemble_changes.csv'
|
|
|
|
|
out_file_name = Estuary + '_' + Clim_var_type + '_' + Stats + '_NARCliM_ensemble_changes.csv'
|
|
|
|
|
out_path = output_directory + '/' + out_file_name
|
|
|
|
|
delta_all_df.to_csv(out_path)
|
|
|
|
|
|
|
|
|
@ -214,7 +225,7 @@ for clim_var_csv_path in Clim_Var_CSVs:
|
|
|
|
|
|
|
|
|
|
#plt.cm.Paired(np.arange(len(Fdf_1900_2080_means)))
|
|
|
|
|
#write the key plots to a single pdf document
|
|
|
|
|
pdf_out_file_name = Clim_var_type + '_start_' + Base_period_start + '_NARCliM_summary_9.pdf'
|
|
|
|
|
pdf_out_file_name = Clim_var_type + '_start_' + Base_period_start + '_NARCliM_summary_10.pdf'
|
|
|
|
|
pdf_out_path = output_directory +'/' + pdf_out_file_name
|
|
|
|
|
#open pdf and add the plots
|
|
|
|
|
with PdfPages(pdf_out_path) as pdf:
|
|
|
|
|