# -*- coding: utf-8 -*-
#####################################----------------------------------
#Last Updated - March 2018
#@author: z5025317 Valentin Heimhuber
#code for creating climate prioritization plots for NARCLIM variables.
#Inputs: Uses CSV files that contain all 12 NARCLIM model runs time series for 1 grid cell created with: P1_NARCliM_NC_to_CSV_CCRC_SS.py
#####################################----------------------------------
#Load packages
#####################################----------------------------------
import numpy as np
import os
import pandas as pd
import glob
import matplotlib
import matplotlib . pyplot as plt
from datetime import datetime
from datetime import timedelta
from matplotlib . backends . backend_pdf import PdfPages
matplotlib . style . use ( ' ggplot ' )
#
# Set working direcotry (where postprocessed NARClIM data is located)
os . chdir ( ' C:/Users/z5025317/WRL_Postdoc/Projects/Paper#1/ ' )
#
#
#####################################----------------------------------
#set input parameters
Base_period_start = ' 1990-01-01 '
Base_period_end = ' 2080-01-01 ' #use last day that's not included in period as < is used for subsetting
Estuary = ' Bateman ' # 'Belongil'
#Clim_var_type = 'tasmean' will create pdf for all variables in folder
#####################################----------------------------------
#set directory path for output files
output_directory = ' Output/ ' + Estuary
#output_directory = 'J:/Project wrl2016032/NARCLIM_Raw_Data/Extracted'
if not os . path . exists ( output_directory ) :
os . makedirs ( output_directory )
print ( ' ------------------------------------------- ' )
print ( " output directory folder didn ' t exist and was generated " )
print ( ' ------------------------------------------- ' )
print ( ' ------------------- ' )
Clim_Var_CSVs = glob . glob ( ' ./Data/NARCLIM_Site_CSVs/ ' + Estuary + ' /* ' )
#Clim_Var_CSV = glob.glob('./Site_CSVs/' + Clim_var_type + '*' )
#read CSV file
for clim_var_csv_path in Clim_Var_CSVs :
#clim_var_csv_path = Clim_Var_CSVs[0]
Filename = os . path . basename ( os . path . normpath ( clim_var_csv_path ) )
Clim_var_type = Filename . split ( ' _ ' , 1 ) [ 0 ]
print ( clim_var_csv_path )
Full_df = pd . read_csv ( clim_var_csv_path , index_col = 0 , parse_dates = True )
#pandas datestamp index to period (we don't need the 12 pm info in the index (daily periods are enough))
Full_df . index = Full_df . index . to_period ( ' D ' )
#check data types of columns
#Full_df.dtypes
#substract a constant from all values (temp)
if Clim_var_type == ' tasmean ' or Clim_var_type == ' tasmax ' :
Full_df = Full_df . iloc [ : , 0 : ( Ncols_df - 1 ) ] - 273.15
#index the narclim periods if needed
#Full_df.loc[(Full_df.index >= '1990-01-01') & (Full_df.index < '2010-01-01'), 'period']= '1990-2009'
#Full_df.loc[(Full_df.index >= '2020-01-01') & (Full_df.index < '2040-01-01'), 'period']= '2020-2039'
#Full_df.loc[(Full_df.index >= '2060-01-01') & (Full_df.index < '2080-01-01'), 'period']= '2060-2079'
#Subset the data to the minimum base period and above (used to set the lenght of the present day climate period)
#Fdf_1900_2080 = Full_df.loc[(Full_df.index >= Base_period_start) & (Full_df.index < Base_period_end)] # not necessary if not using reanalysis models for base period
Fdf_1900_2080 = Full_df . drop ( columns = [ ' period ' ] )
Ncols_df = len ( Fdf_1900_2080 )
#Aggregate daily df to annual time series
if ( Clim_var_type == ' pracc ' or Clim_var_type == ' evspsblmean ' or Clim_var_type == ' potevpmean '
or Clim_var_type == ' pr1Hmaxtstep ' or Clim_var_type == ' wss1Hmaxtstep ' ) :
Fdf_1900_2080_annual = Fdf_1900_2080 . resample ( ' A ' ) . sum ( )
Fdf_1900_2080_annual = Fdf_1900_2080_annual . replace ( 0 , np . nan )
Fdf_1900_2080_monthly = Fdf_1900_2080 . resample ( ' M ' ) . sum ( )
Fdf_1900_2080_monthly = Fdf_1900_2080_monthly . replace ( 0 , np . nan )
Fdf_1900_2080_weekly = Fdf_1900_2080 . resample ( ' W ' ) . sum ( )
Fdf_1900_2080_weekly = Fdf_1900_2080_weekly . replace ( 0 , np . nan )
Fdf_Seas_means = Fdf_1900_2080 . resample ( ' Q-NOV ' ) . sum ( ) #seasonal means
Fdf_Seas_means = Fdf_Seas_means . replace ( 0 , np . nan )
else :
Fdf_1900_2080_annual = Fdf_1900_2080 . resample ( ' A ' ) . mean ( )
Fdf_1900_2080_monthly = Fdf_1900_2080 . resample ( ' M ' ) . mean ( )
Fdf_1900_2080_weekly = Fdf_1900_2080 . resample ( ' W ' ) . mean ( )
Fdf_Seas_means = Fdf_1900_2080 . resample ( ' Q-NOV ' ) . mean ( ) #seasonal means
#plot the mean of all model runs
print ( ' ------------------------------------------- ' )
print ( ' mean of all models for climate variable: ' + Clim_var_type )
Fdf_1900_2080_means = Fdf_1900_2080 . mean ( )
Fdf_1900_2080_means . plot ( kind = ' bar ' ) . figure
print ( ' ------------------------------------------- ' )
#time series plots:
#ranks = Fdf_1900_2080_means[3:].rank(axis=0)
df3 = Fdf_1900_2080_annual
Fdf_annual_sorted = df3 . reindex_axis ( df3 . mean ( ) . sort_values ( ) . index , axis = 1 )
Fdf_annual_sorted_subset = Fdf_annual_sorted . iloc [ : , [ 0 , 1 , 2 , 3 , 5 , 7 , 13 , 15 , 18 , 22 , 24 , 25 , 30 , 33 ] ]
#write the key plots to a single pdf document
pdf_out_file_name = Clim_var_type + ' _start_ ' + Base_period_start + ' _NARCliM_summary4.pdf '
pdf_out_path = output_directory + ' / ' + pdf_out_file_name
#open pdf and add the plots
#developement
#I want to create a simple density plot for all values in present day, near future and far future
#this should be an easy indicator of change
#subset present day simulations
len ( Fdf_1900_2080 . columns )
Full_current_df = Fdf_1900_2080 . iloc [ : , range ( 0 , 12 ) ]
Full_current_df = Full_current_df . stack ( )
#nearfuture
Full_nearfuture_df = Fdf_1900_2080 . iloc [ : , range ( 12 , 24 ) ]
Full_nearfuture_df = Full_nearfuture_df . stack ( )
#farfuture
Full_farfuture_df = Fdf_1900_2080 . iloc [ : , range ( 24 , len ( Fdf_1900_2080 . columns ) ) ]
Full_farfuture_df = Full_farfuture_df . stack ( )
Summarized_df = pd . concat ( [ Full_current_df , Full_nearfuture_df ] , axis = 1 , ignore_index = True )
Summarized_df = pd . concat ( [ Summarized_df , Full_farfuture_df ] , axis = 1 , ignore_index = True )
Summarized_df . columns = [ ' presentday ' , ' nearfuture ' , ' farfuture ' ]
plt . title ( Clim_var_type + ' - density comparison - full period ' )
Summarized_df . plot . kde ( )
Summarized_df . boxplot ( rot = 90 )
#getting to more refined and meaningful plots
Fdf_1900_2080_sorted = Fdf_1900_2080 . reindex_axis ( sorted ( Fdf_1900_2080 . columns ) , axis = 1 )
Fdf_1900_2080_sorted_means = pd . DataFrame ( Fdf_1900_2080_sorted . mean ( ) )
df = Fdf_1900_2080_sorted_means
df = df . reset_index ( )
df = df [ df . index % 3 != 1 ]
df [ ' C ' ] = df [ 0 ] . diff ( )
a = df [ df . index == df [ ' C ' ] . argmax ( skipna = True ) ]
a [ ' index ' ]
df . iloc [ [ df [ ' C ' ] . argmax ( skipna = True ) ] ]
df [ ' C ' ] . argmax ( skipna = True )
df [ ' C ' ] . argmin ( skipna = True )
df [ ' C ' ] . argmean ( skipna = True )
df [ df [ ' C ' ] == df [ ' C ' ] . median ( ) ]
max ( df [ ' C ' ] )
Fdf_1900_2080_sorted_means . plot ( kind = ' bar ' ) . figure
MIROC_R2_df = Fdf_1900_2080 . iloc [ : , [ 1 , 13 , 28 ] ]
#end of developement
with PdfPages ( pdf_out_path ) as pdf :
#barplot of model means
plt . title ( Clim_var_type + ' - model means - full period ' )
ymin = min ( Fdf_1900_2080_means )
ymax = max ( Fdf_1900_2080_means )
Fdf_1900_2080_means . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#full period density comparison
plt . title ( Clim_var_type + ' - density comparison - full period - one model ' )
MIROC_R2_df . plot . kde ( )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#annual box
plt . title ( Clim_var_type + ' - Annual means for one model ' )
Fdf_1900_2080_annual . iloc [ : , [ 1 , 13 , 28 ] ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#annual box
plt . title ( Clim_var_type + ' - Annual means for one model B ' )
Fdf_1900_2080_annual . iloc [ : , [ 3 , 18 , 30 ] ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#annual box
plt . title ( Clim_var_type + ' - Annual means for one model C ' )
Fdf_1900_2080_annual . iloc [ : , [ 8 , 17 , 26 ] ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#monthly box
plt . title ( Clim_var_type + ' - Monthly means ' )
Fdf_1900_2080_monthly . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#weekly box
plt . title ( Clim_var_type + ' - Weekly means ' )
Fdf_1900_2080_weekly . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#daily box
plt . title ( Clim_var_type + ' - Daily means ' )
Fdf_1900_2080 . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
# time series plot annual ALL models
plt . title ( Clim_var_type + ' - Time series - all models ' )
Fdf_1900_2080_annual . plot ( legend = False )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#
plt . title ( Clim_var_type + ' - Time series - representative models ' )
Fdf_annual_sorted_subset . plot ( legend = False )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
# seasonal mean boxplots
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
plt . title ( Clim_var_type + ' - DJF Summer means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - DJF Summer means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
plt . title ( Clim_var_type + ' - MAM Autumn means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - MAM Autumn means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
plt . title ( Clim_var_type + ' - JJA Winter means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - JJA Winter means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
plt . title ( Clim_var_type + ' - SON Spring means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - SON Spring means ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#plots not used
#Fdf_annual_sorted_subset.plot(legend=False, subplots=True)